Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
K (→Beispiele) |
K (→Einschränkung auf IR+) |
||
Zeile 69: | Zeile 69: | ||
− | Offenbar | + | Offenbar ergibt die Wurzelfunktion <math>f(x)=\sqrt[n]{x}</math> zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt: |
− | + | :<math>\sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3,</math> | |
− | + | :<math>\sqrt[3]{ 27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math> | |
− | + | ||
− | Allerdings kann | + | Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar: |
− | + | :<math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math> | |
− | + | ||
Um solche Fälle von Nicht-Eindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also: | Um solche Fälle von Nicht-Eindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also: | ||
− | + | :<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math> | |
− | + | ||
==== Wurzelfunktion auf ganz IR ==== | ==== Wurzelfunktion auf ganz IR ==== |
Version vom 28. Januar 2009, 16:18 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Vergleich mit Funktionen aus Stufe 2
|
Potenzen und Wurzeln
Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.
Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:
Im Falle n=2 nennt man die Wurzel "Quadratwurzel", und man schreibt:
Beispiele
In der Regel hat eine positive Zahl zwei Quadratwurzeln, eine positive und eine negative. So ist etwa
- .
Aus negativen Zahlen kann man dagegen keine Quadratwurzel ziehen, denn:
- , nicht definiert.
- , aber auch
Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+
Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:
Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:
Um solche Fälle von Nicht-Eindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass
. Dann gilt: IDg = IR.