Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
(→Funktionsgraph kennenlernen) |
(→Vergleich mit Funktionen aus Stufe 2) |
||
Zeile 27: | Zeile 27: | ||
{| cellspacing="10" | {| cellspacing="10" | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
− | | {{Arbeiten|NUMMER= | + | | {{Arbeiten|NUMMER=2|ARBEIT= |
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern. | Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 1 und 2 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern. | ||
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | # Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf |
Version vom 11. Februar 2009, 22:25 Uhr
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Funktionsgraph kennenlernen
|
Vergleich mit Funktionen aus Stufe 2
|
neue Datei datei
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen der Bauart mit
Da ist, nennt man diese speziellen Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ID ist - wie die Aufgaben 1 und 2 gezeigt haben - in der Regel (näheres siehe unten) nicht negativ, also ID = IR+0
Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:
Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:
Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.
Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Auch hier wird man nur die physikalisch sinnvolle Lösung angeben.
Beispiel: Kubikwurzel
Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:
Einfluss von Parametern
|
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+0
Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:
Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:
Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die nicht-negativen reelle Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.