Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
K (→*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen) |
(Stufe 5 versteckt) |
||
Zeile 1: | Zeile 1: | ||
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | ||
− | '''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4 | + | '''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen Test|Test]]'''</div> |
+ | |||
Es sei stets <math>\mathbb N_0 = \left\{ 0,1,2,\dots \right\}</math> und <math>\mathbb N = \left\{ 1,2,3,\dots \right\}</math>, insbesondere also <math>\mathbb N_0 \neq \mathbb N</math>.<br /> | Es sei stets <math>\mathbb N_0 = \left\{ 0,1,2,\dots \right\}</math> und <math>\mathbb N = \left\{ 1,2,3,\dots \right\}</math>, insbesondere also <math>\mathbb N_0 \neq \mathbb N</math>.<br /> |
Version vom 24. Februar 2009, 16:32 Uhr
Es sei stets und , insbesondere also .
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Funktionsgraph kennenlernen
|
Vergleich mit Funktionen aus Stufe 2
|
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen mit ,
Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ID ist - wie die Aufgaben 1 und 2 gezeigt haben - nicht negativ (Nähere Erläuterungen hierzu: siehe unten) , also ID = IR+0. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion mit die Umkehrfunktion zur Potenzfunktion der Bauart und die Umkehrfunktion zu (Näheres zur Umkehrfunktion siehe nächstes Kapitel).
Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:
Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. . Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:
Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Die Lösung ist also angeben.
Beispiel: Kubikwurzel
Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:
Einfluss von Parametern
In nebenstehendem Applet kannst Du die Parameter und mit den Schiebereglern verändern.
|
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
(freilwillig)
Einschränkung auf IR+0
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Wegen
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.