Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
(→*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip) |
K (→Zusammenfassung) |
||
Zeile 94: | Zeile 94: | ||
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br /> | Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br /> | ||
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | ||
− | {{Lösung versteckt| | + | {{Lösung versteckt| Potenzfunktionen mit <math>f(x) = x^{\frac 1 n}</math> mit <math>n\geq2</math> sind auf ihrem Definitionsbereich <math>\mathbb{D}=\mathbb{R}^+_0</math> streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart <math>f(x) = x^n.</math><br />Hat man aber eine Potenzfunktion <math>f(x) = x^n</math> mit <math>n\geq2</math> (also eine aus der Stufe 1 dieses Lernpfades) vorgegeben, so ist sie auf ihrem Defintionsbereich <math>\mathbb{D}=\mathbb{R}</math> sowohl monoton fallend als auch monoton steigend. Die Umkehrbarkeit ist aber nur auf streng monotonen Intervallen möglich. Betrachtet man <math>f</math> auf dem eingeschränkten Definitionsbereich <math>\mathbb{R}^+_0</math>, auf dem sie streng monoton ist, dann ist sie dort umkehrbar und hat die Umkehrfunktion <math>f(x) = x^{\frac 1 n}</math>. }} |
}} | }} | ||
Version vom 28. März 2009, 10:19 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN
Es sei stets und
, insbesondere also
.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen negativen Stammbruch der Form mit
als Exponenten haben. Für diese Art der Exponenten gilt:
.
Vergleich mit Funktionen aus Stufe 3
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
|
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl
und eine natürliche Zahl
wird definiert:
für
Auf unsere Situation angewandt ergibt sich:
|
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel
Es sei ![]() ![]() ![]() ![]()
Vertauschen von |
Beispiel
Es sei ![]() ![]() ![]() Auflösen nach |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von und
!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit für
sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit für
sind Potenzfunktionen mit
.
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
Potenzfunktionen mit
![]() ![]() ![]() ![]() Hat man aber eine Potenzfunktion ![]() ![]() ![]() ![]() ![]() ![]() |
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
*: freiwillig
Die "5 S" lauten:
Schau Dir dieses Video (Link hier) auf www.oberprima.com an und beantworte dann die folgenden Fragen:
|
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit
|
|