Quadratische Funktionen - Übungen 2: Unterschied zwischen den Versionen
(+hinweis) |
|||
Zeile 1: | Zeile 1: | ||
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | ||
− | [[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]] | + | [[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_Stationenbetrieb|Stationenbetrieb]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]] |
</div> | </div> | ||
Version vom 12. März 2010, 15:48 Uhr
Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Stationenbetrieb - Allgemeine quadratische Funktion - Übungen 3
Aufgabe 1: Anhalteweg Die Funktion s(v) = 0,1v2 + 1,5v ist ein Beispiel für eine Funktion, die den Zusammenhang zwischen der anfänglichen Geschwindigkeit eines Fahrzeuges in m/s und dem Anhalteweg für einen konkreten Bremsvorgang angibt.
|
Aufgabe 2: Bestimme a und b
|
Aufgabe 3: Term und Graph zuordnen
Ordne den Funktionsgraphen den richtigen Term zu.
f(x) = 2x2 - 4x (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [-1|6] liegt auf dem Graphen.) (!Der Punkt [-1|-2] liegt auf dem Graphen.) f(x) = - 0,25x2 + 3x (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|5] liegt auf dem Graphen.) (!Der Punkt [2|7] liegt auf dem Graphen.) Welche der Termpaare gehören zu Funktionen, deren Graphen bezüglich der y-Achse symmetrisch zueinander sind? (!7x2 und -7x2) (7x2 - 2x und 7x2 + 2x) (!7x2 - 2x und -7x2 + 2x) (!7x2 - 2 und 7x2 + 2) (-7x2 + 2x und -7x2 - 2x) (!7x2 - 2 und 7x2 + 2x) |
Als nächstes lernst du die allgemeine quadratische Funktion kennen. |