Potenzfunktionen - 5. Stufe: Unterschied zwischen den Versionen
Aus Medienvielfalt-Wiki
K (hat „Potenzfunktionen 5. Stufe“ nach „Potenzfunktionen - 5. Stufe“ verschoben) |
|||
(5 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 2: | Zeile 2: | ||
'''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen 5. Stufe|5. Stufe]] - [[Potenzfunktionen Test|Test]]'''</div> | '''[[Potenzfunktionen|Start]] - [[Potenzfunktionen Einführung|Einführung]] - [[Potenzfunktionen 1. Stufe|1. Stufe]] - [[Potenzfunktionen 2. Stufe|2. Stufe]] - [[Potenzfunktionen 3. Stufe|3. Stufe]] - [[Potenzfunktionen 4. Stufe|4. Stufe]] - [[Potenzfunktionen 5. Stufe|5. Stufe]] - [[Potenzfunktionen Test|Test]]'''</div> | ||
− | == Die Graphen der Funktionen mit f(x) = x<sup>p/q</sup>, p <small>∈</small> Z und q <small>∈</small> IN== | + | == *Ergänzung für interessiert Schülerinnen und Schüler:<br>Die Graphen der Funktionen mit f(x) = x<sup>p/q</sup>, p <small>∈</small> Z und q <small>∈</small> IN== |
− | '''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen Bruch der Form <math>\textstyle - \frac{p}{q}</math> mit <math>p \in \mathbb{Z}</math> und <math>q \in \mathbb{N}</math> als Exponenten haben.''' Man spricht dann von Potenzfunktionen mit | + | '''Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen Bruch der Form <math>\textstyle - \frac{p}{q}</math> mit <math>p \in \mathbb{Z}</math> und <math>q \in \mathbb{N}</math> als Exponenten haben.''' Man spricht dann von Potenzfunktionen mit rationalem Exponenten. |
Zeile 14: | Zeile 14: | ||
|- style="vertical-align:top;" | |- style="vertical-align:top;" | ||
| {{Arbeiten|NUMMER=1|ARBEIT= | | {{Arbeiten|NUMMER=1|ARBEIT= | ||
− | + | Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus vorangegangenen Stufen dieses Kurses kennst (rot und lila gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern. | |
# Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | # Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf | ||
#* Definitionsbereich | #* Definitionsbereich | ||
Zeile 33: | Zeile 33: | ||
|| | || | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
== Die Graphen der Potenzfunktion mit f(x) = a x<sup>p/q</sup>== | == Die Graphen der Potenzfunktion mit f(x) = a x<sup>p/q</sup>== |
Aktuelle Version vom 4. Januar 2011, 12:45 Uhr
*Ergänzung für interessiert Schülerinnen und Schüler:
Die Graphen der Funktionen mit f(x) = xp/q, p ∈ Z und q ∈ IN
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen Bruch der Form mit und als Exponenten haben. Man spricht dann von Potenzfunktionen mit rationalem Exponenten.
Vergleich mit Funktionen aus vorangegangenen Stufen
|
Die Graphen der Potenzfunktion mit f(x) = a xp/q
Fasst man alle Variationsmöglichkeiten der Potenzfunktion der vorangegangenen Stufen zusammen, so erhält man die Potenzfunktion mit den Variablen .
|