Quadratische Funktionen - Bremsweg: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
K (hat „Quadratische Funktionen/ Bremsweg“ nach „Quadratische Funktionen - Bremsweg“ verschoben und dabei eine Weiterleitung überschrieben: zurück verschieben)
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
+
{{Quadratische Funktionen}}
[[Einführung_in_quadratische_Funktionen|Einführung]] - [[Quadratische_Funktionen_-_Bremsweg|Bremsweg]] - [[Quadratische_Funktionen_-_Bremsbeschleunigung|Unterschiedliche Straßenverhältnisse]] - [[Quadratische_Funktionen_-_Übungen1|Übungen 1]] - [[Quadratische_Funktionen_-_Anhalteweg|Anhalteweg]] - [[Quadratische_Funktionen_-_Übungen2|Übungen 2]] - [[Quadratische_Funktionen_-_Stationenbetrieb|Stationenbetrieb]] - [[Quadratische_Funktionen_-_allgemeine quadratische Funktion|Allgemeine quadratische Funktion]] - [[Quadratische_Funktionen_-_Übungen3|Übungen 3]]
+
</div>
+
  
  
 
=== Einstieg ===
 
=== Einstieg ===
Eine gute Bremsung ist für unsere eigene Sicherheit und die der anderen Verkehrsteilnehmer sehr wichtig. Folgendes Video ist leider kein Beleg für die Aussage!=)
 
[http://www.youtube.com/watch?v=nI-eWMv2aJw Schlechter Bremsweg]<br />
 
<br />
 
So nun aber zum Ernst zurück... Oftmals stellt sich die Frage:
 
 
 
[[Bild:YouTube_Bremsentest.jpg|right|300px]]
 
[[Bild:YouTube_Bremsentest.jpg|right|300px]]
 
'''Ist bei doppelter Geschwindigkeit auch der Bremsweg doppelt so lang?''' Was meinst du?  
 
'''Ist bei doppelter Geschwindigkeit auch der Bremsweg doppelt so lang?''' Was meinst du?  
Zeile 55: Zeile 48:
 
#Ermittle anhand des Graphen einen Schätzwert für den Bremsweg bei 70 km/h.
 
#Ermittle anhand des Graphen einen Schätzwert für den Bremsweg bei 70 km/h.
 
}}
 
}}
 +
 +
:&nbsp;'''Lösung:''' <ggb_applet height="31" width="130" type="button" filename="bremsweg01.ggb" />
  
 
<br>
 
<br>
Zeile 65: Zeile 60:
 
:Vergleiche diese Formel mit der von dir in a) gefundenen Formel.<br /><br />
 
:Vergleiche diese Formel mit der von dir in a) gefundenen Formel.<br /><br />
  
 
+
:{{Lösung versteckt|1=
 +
#z.B. <math>s = 0,01 \cdot v^2</math> oder <math>s = \frac{v^2}{100}</math>(dabei ist s der Bremsweg in Metern und v die Geschwindigkeit in km/h)<br />
 +
#Fahrschulformel: <math>s = \frac{v}{10} \cdot \frac{v}{10} = \frac{v^2}{100} = \frac{1}{100} \cdot v^2 = 0,01 \cdot v^2</math>. Die Formeln stimmen also überein.<br />
 +
: ''Bemerkung: Die Formeln stimmen nur für gewöhnliche, nicht für "Gefahren"-bremsungen.''
 +
}}
  
 
}}
 
}}
 +
  
 
{|border="0" cellspacing="0" cellpadding="4"
 
{|border="0" cellspacing="0" cellpadding="4"
|align = "left" width="600"| {{Arbeiten|NUMMER=3|
+
|align = "left" width="600"|In einem ruhigen Wohnviertel in Niederbremsbach hat Herr Mütze fast ein kleines Mädchen angefahren, das ihrem auf die Straße rollenden Ball hinterher lief. Obwohl das Mädchen mit dem Schrecken davonkam, soll nun geklärt werden, ob sich Herr Mütze an die Geschwindigkeitsbegrenzung von 50 km/h gehalten hatte. Dem Unfallprotokoll ist zu entnehmen, dass Herr Mütze eine Bremsspur von 30,25 Metern erzeugt hat.[[Bild:unfall1.gif|right]]
ARBEIT= }}
+
In Tests wird die Güte von Bremsanlagen getestet. Dazu wird eine Vollbremsung aus einer Geschwindigkeit von 100km/h durchgeführt. Sehr gute Bremsanlagen bringen das Auto auf trockener Straße nach 36m zum Stillstand. Bei ungünstigen Straßenverhältnissen beträgt der Bremsweg 60m .
+
 
|align = "right"|&nbsp;
 
|align = "right"|&nbsp;
 
|align = "right"|
 
|align = "right"|
 
+
[[Bild:Bundesarchiv Bild 183-J0710-0303-012, Wismar, Wendorf, Kinder mit Ball.jpg|200px]]
 
|}
 
|}
  
#Um wie viel Prozent ist der Bremsweg bei ungünstigen Verhältnissen höher als der auf einer trockenen Straße?<br />
 
#Wie verändert sich der Bremsweg allgemein, wenn die Geschwindigkeit eines Autos verdoppelt bzw. halbiert wird?<br />
 
#Die Länge des Bremsweges kann in Abhängigkeit von der gefahrenen Geschwindigkeit durch eine Funktionsgleichung der Form s(v) = k·v² beschrieben werden. Bestimme die Konstante k für beide Straßenverhältnisse.<br />
 
#In Wohngebieten gibt es oft eine Geschwindigkeitsbegrenzung auf 30km/h . Wie lang sind die Bremswege bei dieser Geschwindigkeit? Vergleiche mit den Bremswegen bei der sonst in der Stadt üblichen Geschwindigkeit von 50km/h . Beurteile den Sinn von Geschwindigkeitsbegrenzungen in Wohngebieten.<br />
 
  
<br />
+
{{Arbeiten|NUMMER=3|
 +
ARBEIT=
 +
#Entscheide, ob sich Herr Mütze an die Geschwindigkeitsbegrenzung gehalten hatte.<br />
 +
#Berechne die Geschwindigkeit, die zu einem Bremsweg von 30,25 Metern führt.<br /><br />
  
 +
:{{Lösung versteckt|1=
 +
#Nach obiger Tabelle hätte Herr Mütze, falls er sich an die Geschwindigkeitsbegrenzung gehalten hätte, allenfalls einen Bremsweg von 25 m haben dürfen.<br />
 +
#<math>30,25 = 0,01 \cdot v^2 \Leftrightarrow 3025 = v^2\Leftrightarrow v = \pm \,55</math>
 +
:Nach der Formel aus Aufgabe 1 war Herr Mütze 55 km/h schnell.
 +
:''Bemerkung: Tatsächlich ist der Bremsweg bei einer "Gefahrenbremsung" nur etwa halb so lang wie in der obigen Tabelle angegeben. Geht man von einer "Gefahrenbremsung" aus, so käme man auf eine Geschwindigkeit von fast 78 km/h!''<br />
 +
}}
  
== Schreibe dir nun die neuen Erkenntnisse, die du in diesem Kapitel erworben hast auf und versuche sie auch mit Hilfe deines Partners zu verstehen! Was ist an Stoff neu hinzugekommen, was war bereits bekannt? Mache dir Gedanken. ==
+
}}
  
 
 
 
'''''Lösung zur Aufgabe1:'''''<br /> <ggb_applet height="31" width="130" type="button" filename="bremsweg01.ggb" />
 
 
<br />
 
<br />
'''''Lösung zur Aufgabe 2:'''''
 
:{{Lösung versteckt|1=
 
#z.B. <math>s = 0,01 \cdot v^2</math> oder <math>s = \frac{v^2}{100}</math>(dabei ist s der Bremsweg in Metern und v die Geschwindigkeit in km/h)<br />
 
#Fahrschulformel: <math>s = \frac{v}{10} \cdot \frac{v}{10} = \frac{v^2}{100} = \frac{1}{100} \cdot v^2 = 0,01 \cdot v^2</math>. Die Formeln stimmen also überein.<br />
 
: ''Bemerkung: Die Formeln stimmen nur für gewöhnliche, nicht für "Gefahren"-bremsungen.''
 
}}
 
<br />
 
'''''Lösung zur Aufgabe 3:'''''
 
:{{Lösung versteckt|1=
 
#Man berechnet den Bremsweg bei ungünstigen Verhältnissen wiefolgt: (24m:36m) x 100 = 66,7%.<br />
 
#Da der Bremsweg quadratisch mit der Geschwindigkeit wächst, bedeutet eine Verdoppelung der Geschwindigkeit eine Vervierfachung des Bremsweges; eine Halbierung bedeutet, dass nur ein Viertel des Bremsweges erforderlich ist.<br />
 
#Bei trockener Straße erhält man für die Konstante k(t): 36 = k(t) x 100² <=> k(t) = 0,0036<br /> Bei feuchter Straße erhält man für die Konstante k(f): 60 = k(f) x 100² <=> k(f) = 0,006
 
#Bei trockener Straße erhält man für den Bremsweg s bei einer Geschwindigkeit von 30 Km/h: s(30 Km/h) = k(t) x 30² <=> k(t) = 3,2<br /> Bei feuchter Straße erhält man für den Bremsweg s bei einer Geschwindigkeit von 30 Km/h: s(30 Km/h) = k(f) x 30² <=> k(f) = 5,4<br /> Der Bremsweg reduziert sich also fast auf ein Drittel des Wertes bei 50km/h. Dies ist ein großer Sicherheitsgewinn, insbesondere in Wohngebieten (spielende Kinder).
 
 
}}
 
  
 +
----
 
{|border="0" cellspacing="0" cellpadding="4"
 
{|border="0" cellspacing="0" cellpadding="4"
 
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
 
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
|align = "center"|'''
+
|align = "left"|'''Als nächstes erfährst du, wie die Länge des Bremsweges von der "Bremsbeschleunigung" abhängig ist.'''<br />  
<br />
+
 
+
 
+
 
+
Als nächstes erfährst du, wie die Länge des Bremsweges von der "Bremsbeschleunigung" abhängig ist.'''<br />  
+
 
[[Bild:Pfeil.gif]] &nbsp; [[Quadratische_Funktionen_-_Bremsbeschleunigung|'''Hier geht es weiter''']]'''.'''
 
[[Bild:Pfeil.gif]] &nbsp; [[Quadratische_Funktionen_-_Bremsbeschleunigung|'''Hier geht es weiter''']]'''.'''
  
 
|}
 
|}

Aktuelle Version vom 4. Januar 2011, 12:51 Uhr

Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Allgemeine quadratische Funktion - Übungen 3


Einstieg

YouTube Bremsentest.jpg

Ist bei doppelter Geschwindigkeit auch der Bremsweg doppelt so lang? Was meinst du?

Diese Frage wurde im Fernsehen bei Kopfball.de untersucht. In dem Video aus der Sendung findest du eine Antwort!!


Tabelle, Graph und Formel

Die Polizei hat Messungen durchgeführt, um den Zusammenhang zwischen der Geschwindigkeit eines Autos und seinem Bremsweg zu erkunden. Klar ist: Je schneller eine Auto fährt, desto länger ist sein Bremsweg. Aber ist das wirklich so einfach...?

Du kannst den Zusammenhang selbst untersuchen. Hier sind die Daten, die die Polizei gesammelt hat:


Geschwindigkeit (in km/h) 10 20 30 40 50 80 100 120
       Bremsweg (in m) 1 4 9 16 25 64 100 144

 

  Aufgabe 1  Stift.gif
  1. Stelle die Daten aus der Tabelle in einem Koordinatensystem dar. Trage dabei nach rechts die Geschwindigkeit (in km/h) und nach oben den Bremsweg (in m) ein.
  2. Verbinde die Punkte zu einem Funktionsgraphen (der keine "Ecken" haben sollte).
  3. Ermittle anhand des Graphen einen Schätzwert für den Bremsweg bei 70 km/h.


 Lösung:



  Aufgabe 2  Stift.gif
  1. Zwischen den Daten der Wertetabelle besteht ein ganz bestimmter Zusammenhang. Versuche eine Formel zu finden, mit deren Hilfe man aus der Geschwindigkeit den Bremsweg berechnen kann.
  2. In der Fahrschule lernt man: BW = v/10 mal v/10 (Bremsweg = Geschwindigkeit durch 10 mal Geschwindigkeit durch 10).
Vergleiche diese Formel mit der von dir in a) gefundenen Formel.

  1. z.B. s = 0,01 \cdot v^2 oder s = \frac{v^2}{100}(dabei ist s der Bremsweg in Metern und v die Geschwindigkeit in km/h)
  2. Fahrschulformel: s = \frac{v}{10} \cdot \frac{v}{10} = \frac{v^2}{100} = \frac{1}{100} \cdot v^2 = 0,01 \cdot v^2. Die Formeln stimmen also überein.
Bemerkung: Die Formeln stimmen nur für gewöhnliche, nicht für "Gefahren"-bremsungen.


In einem ruhigen Wohnviertel in Niederbremsbach hat Herr Mütze fast ein kleines Mädchen angefahren, das ihrem auf die Straße rollenden Ball hinterher lief. Obwohl das Mädchen mit dem Schrecken davonkam, soll nun geklärt werden, ob sich Herr Mütze an die Geschwindigkeitsbegrenzung von 50 km/h gehalten hatte. Dem Unfallprotokoll ist zu entnehmen, dass Herr Mütze eine Bremsspur von 30,25 Metern erzeugt hat.
Unfall1.gif
 

Bundesarchiv Bild 183-J0710-0303-012, Wismar, Wendorf, Kinder mit Ball.jpg


  Aufgabe 3  Stift.gif
  1. Entscheide, ob sich Herr Mütze an die Geschwindigkeitsbegrenzung gehalten hatte.
  2. Berechne die Geschwindigkeit, die zu einem Bremsweg von 30,25 Metern führt.

  1. Nach obiger Tabelle hätte Herr Mütze, falls er sich an die Geschwindigkeitsbegrenzung gehalten hätte, allenfalls einen Bremsweg von 25 m haben dürfen.
  2. 30,25 = 0,01 \cdot v^2 \Leftrightarrow 3025 = v^2\Leftrightarrow v = \pm \,55
Nach der Formel aus Aufgabe 1 war Herr Mütze 55 km/h schnell.
Bemerkung: Tatsächlich ist der Bremsweg bei einer "Gefahrenbremsung" nur etwa halb so lang wie in der obigen Tabelle angegeben. Geht man von einer "Gefahrenbremsung" aus, so käme man auf eine Geschwindigkeit von fast 78 km/h!




Maehnrot.jpg Als nächstes erfährst du, wie die Länge des Bremsweges von der "Bremsbeschleunigung" abhängig ist.

Pfeil.gif   Hier geht es weiter.