Quadratische Funktionen - allgemeine quadratische Funktion: Unterschied zwischen den Versionen
K (hat „Quadratische Funktionen/ Allgemeine quadratische Funktion“ nach „Quadratische Funktionen - allgemeine quadratische Funktion“ verschoben und dabei eine Weiterleitung überschrieben: zurück verschieben) |
|||
(4 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | + | {{Quadratische Funktionen}} | |
− | + | ||
− | + | ||
Zeile 23: | Zeile 21: | ||
Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben. | Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben. | ||
− | + | :{{Lösung versteckt|1= | |
+ | #<span style="color: red">a bestimmt die Weite und die Öffnung nach oben und unten</span><br /> | ||
+ | #<span style="color: blue">b verschiebt den Scheitel</span><br /> | ||
+ | #<span style="color: green">c verschiebt den Scheitel für '''c > 0 nach oben''' und für '''c < 0 nach unten'''</span><br /> | ||
+ | }} | ||
}} | }} | ||
Zeile 43: | Zeile 45: | ||
Graphen liegt. | Graphen liegt. | ||
− | + | :{{Lösung versteckt|1= | |
+ | #<span style="color: blue">a = 0,5; b = 2,4; c = - 1</span><br /> | ||
+ | #<span style="color: red">a = - 1; b = -3; c = 2</span><br /> | ||
+ | #<span style="color: green">a = 0,5; b = - 2,4; c = - 1</span><br /> | ||
+ | }} | ||
}} | }} | ||
Zeile 63: | Zeile 69: | ||
#Vergleiche die beiden Parabeln mit der Normalparabel. | #Vergleiche die beiden Parabeln mit der Normalparabel. | ||
− | + | :{{Lösung versteckt|1= | |
+ | #[[Bild:Quadratisch_Wertetabelle.jpg]] [[Bild:Quadratisch_allgemein3.jpg]] | ||
+ | #<span style="color: green">Scheitel von f: '''S(-3/-2)'''</span>; <span style="color: blue">Scheitel von g:''' S(1/3)'''</span> | ||
+ | #'''Parabel von f''': Enger als Normalparabel, nach oben geöffnet, verschoben | ||
+ | ::'''Parabel von g''': Weiter als Normalparabel, nach unten geöffnet, verschoben | ||
+ | }} | ||
}} | }} | ||
|} | |} | ||
Zeile 78: | Zeile 89: | ||
ARBEIT= | ARBEIT= | ||
Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"? | Welche Bedeutung hat der konstante Teil des Funktionsterms im Anwendungsbeispiel "Abbremsen eines Pkw"? | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
Zeile 123: | Zeile 99: | ||
::Entfernung zur Kreuzung: s = a·v<sup>2</sup> + b·v + c mit c = 30m | ::Entfernung zur Kreuzung: s = a·v<sup>2</sup> + b·v + c mit c = 30m | ||
− | }}<br /> | + | }} |
+ | }} | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | <br /> | ||
---- | ---- |
Aktuelle Version vom 4. Januar 2011, 12:41 Uhr
Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Allgemeine quadratische Funktion - Übungen 3
Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat:
|
|
|
|
|
|
Die allgemeine quadratische Funktion in der Anwendung
Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil (ax2), einen linearen Teil (bx) und einen konstanten Teil (c).
Du hast in den vorangegangenen Kapiteln erfahren, dass sich beim Bremsen eines Pkws der Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form f(x) = ax2 + bx beschreiben lässt, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.
|