Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 24: Zeile 24:
 
}}<br>
 
}}<br>
 
|| <ggb_applet height="300" width="350" showMenuBar="false" showResetIcon="true"  
 
|| <ggb_applet height="300" width="350" showMenuBar="false" showResetIcon="true"  
filename="3_gerade_xn.ggb" />
+
filename="3_gerade_x_minus_n.ggb" />
 
|}
 
|}
  

Version vom 18. Januar 2009, 11:29 Uhr

Start -Einführung - 1. Stufe - 2. Stufe - 3. Stufe - 4. Stufe - 5. Stufe

Inhaltsverzeichnis

Die Graphen der Funktionen mit f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

  Aufgabe 1  Stift.gif
  1. Mit dem Schieberegler kannst du den Exponenten verändern. Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
  3. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x-2 zu f(x) = x-4, dann die beim Übergang von f(x) = x-4 zu f(x) = x-6 usw.!
  4. Wie ändern sich die y-Werte bei f(x) = x-n, n gerade, wenn der x-Wert ver-k-facht wird?
Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-\frac 1k-facht.
Symbolisch f(k \cdot x) = (kx)^{-n} = k^{-n} \cdot x^{-n} = \frac 1k \cdot f(x).


Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit f(x) = x^{-n}, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

  Aufgabe 2  Stift.gif
  1. Beschreibe wieder die Graphen! Achte dabei auf
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe!
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen
  3. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x-1 zu f(x) = x-3, dann die beim Übergang von f(x) = x-3 zu f(x) = x-5 usw.!

Teste dein Wissen

  Aufgabe 3  Stift.gif

TODO: Neue Aufgaben (?)
Wir betrachten die Funktionen mit f(x) = x-n, n eine natürliche Zahl

  1. Für welches n verläuft der Graph durch den Punkt P(2;32)?
  2. Für welches n verläuft der Graph durch Q(1,5;3,375)?
TODO: Lösung


Die Graphen von f(x) = a*x-n, mit a IR

Wir betrachten jetzt die Funktionen mit f(x) = a \cdot x^{-n} , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

  Aufgabe 4  Stift.gif
  1. Es sei zunächst n = 2, also f(x) = a \cdot x^{-2}. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!
  2. Beschreibe die Veränderung der Graphen mit f(x) = a \cdot x^{-n} bei der Veränderung des Parameter a! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.


  Aufgabe 5  Stift.gif

TODO: Neue Aufgaben

Wir betrachten wieder die Funktionen mit f(x) = a \cdot x^{-n}, n eine natürliche Zahl

  1. Bestimme a und n so, dass der Graph durch die Punkte A(-2;4) und B(1;-0,5) verläuft. Nebenstehende Graphik dient als Hilfe. Die Punkte A und B kannst du frei verschieben.
  2. Bestimme a und n so, dass der Graph durch die Punkte A(-1;-1) und B(0,5;3) verläuft. Was fällt auf? Erkläre deine Beobachtungen.
TODO: Lösung


Teste Dein Wissen