Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
K
Zeile 47: Zeile 47:
 
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>
 
* <math>-2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.</math>
  
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich der Wurzelfunktionen grundsätzlich nur auf positive reelle Zahlen ein, d.h.
+
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich nur auf positive reelle Zahlen ein, d.h.
  
<math>f(x) = \sqrt[n]{x}  mit n \in \mathbb{N} und \mathbb{D}=\mathbb{R}_{\geq 0}</math>
+
<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math>

Version vom 19. Januar 2009, 16:25 Uhr

Start - Einführung - 1. Stufe - 2. Stufe - 3. Stufe - 4. Stufe - 5. Stufe

Inhaltsverzeichnis

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form \frac{1}{n} mit n \in \mathbb{N} als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: 0<\frac{1}{n}\leq 1.

Vergleiche mit Funktionen aus Stufe 2

  • Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
  • Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?

Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.


Potenzen und Wurzeln

Potenzfunktionen der Bauart f(x)=x^{\frac{1}{n}} und Wurzelfunktionen g(x)=\sqrt[n]{x} hängen eng zusammen, denn es gilt:

x^{\frac{1}{n}}:=\sqrt[n]{x}

Darin ist die n-te Wurzel festgelegt über:

\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x

Eine Funktion f mit der Gleichung f(x)=\sqrt[n]{x} mit n \in \mathbb{N}, n\geq2 heißt Wurzelfunktion

Beispiele:

  • 16 = \begin{cases} 4\cdot 4 &= 4^2\\ -4 \cdot (-4) &= (-4)^2 \end{cases} \Rightarrow \sqrt{16} = \pm 4, aber
  • -16 = \begin{cases} (-1)\cdot 4\cdot 4 &= (-1)\cdot 4^2\\ (-1)\cdot (-4) \cdot (-4) &= (-1)\cdot (-4)^2 \end{cases} \Rightarrow \sqrt{-16}=\pm 4\cdot\sqrt{-1}, nicht definiert.
  • \sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3, aber auch


Der Definitionsbereich

Offenbar kann man zum Beispiel wegen

  • \sqrt[3]{-27}=\sqrt[3]{-3\cdot -3 \cdot -3} = \sqrt[3]{-3^3} = \sqrt[3]{-3}^3 = -3.

die Wurzelfunktionen f(x)=\sqrt[n]{x} zumindest bei ungradem n sowohl für positive als auch negative x definieren. Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:

  • -2 = \sqrt[3]{-8} = (-8)^{\frac{1}{3}} = (-8)^{\frac{2}{6}} = \left( (-8)^2 \right)^{\frac{1}{6}} = = \left( (8)^2 \right)^{\frac{1}{6}} = (8)^{\frac{2}{6}} = (8)^{\frac{1}{3}} = \sqrt[3]{8} = 2.

Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich nur auf positive reelle Zahlen ein, d.h.

f(x) = \sqrt[n]{x} mit n \in \mathbb{N} und \mathbb{D}=\mathbb{R}_{\geq 0}