Anwendungen in der Physik: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
K (Anwendungen in der Physik)
K (Anwendungen in der Physik)
Zeile 6: Zeile 6:
 
===Anwendungen in der Physik===  
 
===Anwendungen in der Physik===  
  
{{Arbeit|ARBEIT=...}}
+
{{Arbeit|ARBEIT=Die Möve hängt an einer Feder und schwingt bei einmaliger Auslenkung. Im Bild sind die Ruhelage und die größten Auslenkungen aus dieser zu sehen. Die Zeitabstände zwischen den einzelnen Fotos sind jeweils gleich groß. ....fehlt noch ...}}
  
 
{{Merksatz|MERK=
 
{{Merksatz|MERK=

Version vom 20. Januar 2009, 22:52 Uhr

Einführung - Einfluss der Parameter - Bestimmung der Funktionsgleichung aus dem Graphen - Anwendungen in der Physik - Zusatzaufgaben


Anwendungen in der Physik

  Aufgabe   Stift.gif

Die Möve hängt an einer Feder und schwingt bei einmaliger Auslenkung. Im Bild sind die Ruhelage und die größten Auslenkungen aus dieser zu sehen. Die Zeitabstände zwischen den einzelnen Fotos sind jeweils gleich groß. ....fehlt noch ...

Maehnrot.jpg
Merke:

wichtige Begriffe:

  • Amplitude A
Die Amplitude gibt die maximale Auslenkung aus der Ruhelage an.
  • Wellenlänge \lambda ("lambda")
Der Begriff Wellenlänge ist ein anderes Wort für Periode.
  • Schwingungsdauer T
Die Schwingungsdauer gibt die Dauer einer Schwingung in Sekunden an.
  • Frequenz f
Als Frequenz bezeichnet man die Anzahl der Schwingungen pro Sekunde
  • Kreisfrequenz \omega ("omega")


Wiederholung: Frequenz und Amplitude

Oszilloskop.jpg
  Aufgabe   Stift.gif

Auf einem Oszilloskop sieht man obiges Bild.

  • Was kann man dort ablesen?
  • Wie erhält man aus dem Bild die nötigen Informationen?
  • Wie liest man aus der angezeigten Kurve Nullstellen, maximale Amplitude, Abstände, ... ab?

a) Die Sinuskurve ist um 0,75 nach oben verschoben.

Der Abstand zwischen Hoch- und Tiefpunkt der Sinuslinie ist 4,5, also ist die Amplitude 2,25.

Die Periodendauer ist 3,75.

Die Sinuskurve fängt mit 0,25 am linken Rand an.

b) Es sind d = 0,75, a = 2,25, b = 2*PI/3,75 und c = -0,224.
  Aufgabe   Stift.gif
  • In dem Applet auf dieser Seite wird gezeigt, wie man eine Schwingung darstellen kann. Mit dem Schieberegler für t kannst du die Schwingung darstellen. Überlege dir die gestellten Aufgaben und finde dann mit den angegebenen Größen y_max und T einen Funktionsterm für die zugehörige Sinusschwingung.
  • In dem Applet auf diesem Arbeitsblatt werden die Parameter einer Sinusschwingung aus der Physik behandelt. Welche Parameter a,b,c,d entsprechen welchen physikalischen Größen a, f, phi_0?
  • In diesem Lernpfad zur harmonischen Schwingung findest du als Lernschritt 8 eine Aufgabe. Kannst du sie lösen? Fertige eine Zeichnung an! Finde die entsprechenden Größen a,b,c,d von a sin(b x + c)+d?

Weiter geht es mit

Zusatzaufgaben