Trigonometrische Funktionen: Unterschied zwischen den Versionen
K |
K |
||
Zeile 22: | Zeile 22: | ||
|} | |} | ||
− | + | '''Hinweise:''' | |
− | * | + | *Denke bitte daran die Hefteinträge in dein Heft zu übernehmen! |
− | * | + | *Bei den GeoGebra-Applets ist die <math>\ x</math>-Achse mit Vielfachen von <math> \pi </math> beschriftet. Indem man die <math>\ x</math>-Achse mit der rechten Maustaste anklickt und "Eigenschaften" wählt, kann man auf die Einheit'' cm ''umstellen. |
+ | |||
+ | *Zu den meisten Aufgaben gibt es Lösungen, diese befinden sich am Ende der jeweiligen Seite. Bearbeite zuerst die Aufgaben, mache dir Notizen und vergleiche diese erst zum Schluss mit den Lösungen! | ||
---- | ---- |
Version vom 12. Februar 2009, 22:31 Uhr
Hallo! Wäre es nicht toll, wenn du hellsehen könntest? Wenn du den Graphen eines Funktionsterms auch ohne Wertetabelle direkt zeichnen könntest? Wenn du aus dem Graphen einer Funktion deren Term ablesen könntest? Für die linearen und die quadratischen Funktionen beherrschst du diese Kunst wahrscheinlich schon. Dann wirst du vieles von deinem Wissen auf die allgemeine Sinus- und Kosinusfunktion übertragen können. |
|
Hinweise:
- Denke bitte daran die Hefteinträge in dein Heft zu übernehmen!
- Bei den GeoGebra-Applets ist die -Achse mit Vielfachen von beschriftet. Indem man die -Achse mit der rechten Maustaste anklickt und "Eigenschaften" wählt, kann man auf die Einheit cm umstellen.
- Zu den meisten Aufgaben gibt es Lösungen, diese befinden sich am Ende der jeweiligen Seite. Bearbeite zuerst die Aufgaben, mache dir Notizen und vergleiche diese erst zum Schluss mit den Lösungen!
Dieser Lernpfad besteht aus drei Stationen, die du am besten nacheinander bearbeitest. Klicke dazu einfach auf die gewünschte Station!
<graphviz> digraph G { rankdir=RL; "Term" -> "Graph"[label=" "]; edge [color = white]; "Term" -> "Hellsehen"; "Hellsehen" -> "Graph"; edge [color = black]; rankdir=LR; "Graph" -> "Term"; } </graphviz>
: |
Experimentier-Ecke
|
|