Quadratische Funktionen - allgemeine quadratische Funktion: Unterschied zwischen den Versionen
(+arbeitsblatt) |
(text und applet in spaltenform) |
||
Zeile 3: | Zeile 3: | ||
</div> | </div> | ||
− | + | {|border="0" cellspacing="0" cellpadding="4" | |
− | + | |align = "left" width="200"| | |
+ | |width=20px| | ||
+ | |valign="top"; width=700px| | ||
Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. | Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. | ||
− | Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung | + | Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat: <big>f(x)=ax<sup>2</sup>+bx+c </big> |
An Funktionen mit derartigen Gleichungen sollst du nun dein Wissen erproben: | An Funktionen mit derartigen Gleichungen sollst du nun dein Wissen erproben: | ||
+ | |} | ||
+ | {|border="0" cellspacing="0" cellpadding="4" | ||
+ | |align = "left" width="200"| | ||
{{Arbeiten| | {{Arbeiten| | ||
NUMMER=1| | NUMMER=1| | ||
Zeile 17: | Zeile 22: | ||
}} | }} | ||
− | <ggb_applet height="400" width=" | + | |width=20px| |
− | + | |valign="top"| | |
+ | <ggb_applet height="400" width="700" filename="Parabeln_test.ggb" /> | ||
+ | |} | ||
+ | {|border="0" cellspacing="0" cellpadding="4" | ||
+ | |align = "left" width="200"| | ||
{{Arbeiten| | {{Arbeiten| | ||
NUMMER=2| | NUMMER=2| | ||
ARBEIT= | ARBEIT= | ||
Stelle die drei Schieberegler so ein, dass der schwarze Graph genau auf dem | Stelle die drei Schieberegler so ein, dass der schwarze Graph genau auf dem | ||
+ | #roten | ||
+ | #grünen | ||
+ | #blauen Graphen liegt. | ||
+ | }} | ||
− | + | |width=20px| | |
+ | |valign="top"| | ||
+ | <ggb_applet height="500" width="700" filename="Parabeln.ggb" /> | ||
+ | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Arbeiten| | {{Arbeiten| | ||
NUMMER=3| | NUMMER=3| | ||
ARBEIT= | ARBEIT= | ||
− | + | #Gibt es einen Zusammenhang zwischen dem blauen und grünen Graphen? Experimentiere erneut mit dem ersten Applet und bestätige deine Vermutung. | |
− | + | #Setzt den Satz fort: "Wenn zwei Graphen spiegelbildlich bezüglich der y-Achse liegen, dann ... | |
}} | }} | ||
Version vom 15. Februar 2009, 23:26 Uhr
Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen (1) - Anhalteweg - Übungen (2) - Die allgemeine quadratische Funktion - Abschlusstest
Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat: f(x)=ax2+bx+c An Funktionen mit derartigen Gleichungen sollst du nun dein Wissen erproben: |
|
|
|
|
|
Zum Abschluss: ein Test! |
Arbeitsblätter
Dieser Lernpfad wurde erstellt von:
Reinhard Schmidt, Christian Schmidt, Maria Eirich, Andrea Schellmann und Gabi Jauck |