Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
(Menü angepasst) |
|||
Zeile 30: | Zeile 30: | ||
Du hast nun Potenzfunktionen mit den Gleichungen <math>f(x)=x^n</math> und <math>f(x)=x^{-n}</math> kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen: | Du hast nun Potenzfunktionen mit den Gleichungen <math>f(x)=x^n</math> und <math>f(x)=x^{-n}</math> kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen: | ||
− | Die Graphen von Funktionen mit <math>f(x)=x^n</math> und einer natürlichen Zahl n heißen '''Parabeln''', oder genauer: | + | Die Graphen von Funktionen mit <math>f(x)=x^n</math> und einer natürlichen Zahl n heißen '''Parabeln''', oder genauer: '''Parabel ''n''-ter Ordnung'''. <BR> |
Für <math>f(x)=x^2</math> heißt der Graph Normalparabel; für <math>f(x)=x^3</math> dann nennt man den Graphen '''kubische Grundparabel''' (oder '''Parabel dritter Ordnung'''). | Für <math>f(x)=x^2</math> heißt der Graph Normalparabel; für <math>f(x)=x^3</math> dann nennt man den Graphen '''kubische Grundparabel''' (oder '''Parabel dritter Ordnung'''). | ||
Version vom 22. Februar 2009, 17:23 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Parabeln, oder genauer: Parabel n-ter Ordnung.
Für heißt der Graph Normalparabel; für dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Hyperbeln (n-ter Ordnung). Diese haben die x- und die y-Achse als Asymptoten.
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = x-n, n eine natürliche Zahl
|
Die Graphen von f(x) = a*x-n, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|