Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
Zeile 25: | Zeile 25: | ||
== Exponenten, Brüche und Potenzgesetze == | == Exponenten, Brüche und Potenzgesetze == | ||
− | Im vorliegenden Fall betrachten wir negative Stammbrüche als | + | Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang: |
:''Für eine reelle Zahl <math>a</math> und eine natürliche Zahl <math>n</math> wird definiert:'' | :''Für eine reelle Zahl <math>a</math> und eine natürliche Zahl <math>n</math> wird definiert:'' | ||
:<math>a^{-n} := \textstyle \frac{1}{a^n}</math> für <math>a \neq 0.</math> | :<math>a^{-n} := \textstyle \frac{1}{a^n}</math> für <math>a \neq 0.</math> | ||
Zeile 78: | Zeile 78: | ||
|} | |} | ||
− | ''Hinweis: | + | ''Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von <math>f^{-1}</math> und <math>f(x)=x^{-1}</math>!'' |
=== Vergleich mit Potenzfunktionen der Stufe 1 === | === Vergleich mit Potenzfunktionen der Stufe 1 === | ||
Zeile 91: | Zeile 91: | ||
{{Arbeiten|NUMMER=3|ARBEIT= | {{Arbeiten|NUMMER=3|ARBEIT= | ||
− | Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine | + | Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?<br /> |
Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | Begründe Deine Überlegungen und beachte dabei besonders Definitions- und Wertebereich der betrachteten Funktionen, sowie ihr Monotonieverhalten!<br /> | ||
{{Lösung versteckt| kommt noch }} | {{Lösung versteckt| kommt noch }} |
Version vom 22. Februar 2009, 17:10 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN
Es sei stets und , insbesondere also .
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen negativen Stammbruch der Form mit als Exponenten haben. Für diese Art der Exponenten gilt: .
Vergleich mit Funktionen aus Stufe 3
Verleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
|
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl und eine natürliche Zahl wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
|
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel
Es sei eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von .
ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von und ergibt schließlich die gesuchte Funktion: . |
Beispiel
Es sei eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion .
Auflösen nach ergibt: |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von und !
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit für sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit für sind Potenzfunktionen mit .
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
kommt noch
|
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
freiwillig
Die "5 S" lauten:
- Spiegeln
- Strecken
- Stauchen
- Schieben
- Superponieren
Schau Dir dieses Video (Link hier) auf www.oberprima.com an und beantworte dann die folgenden Fragen:
|
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|