Quadratische Funktionen - allgemeine quadratische Funktion: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(neue ggb, layout)
(fehler verbessert, layout)
Zeile 50: Zeile 50:
 
:{{Lösung versteckt|1=
 
:{{Lösung versteckt|1=
 
#<span style="color: blue">a = 0,5; b = 2,4; c = - 1</span><br />
 
#<span style="color: blue">a = 0,5; b = 2,4; c = - 1</span><br />
#<span style="color: red">a = - 1; b = 3; c = 2</span><br />
+
#<span style="color: red">a = - 1; b = -3; c = 2</span><br />
 
#<span style="color: green">a = 0,5; b = - 2,4; c = - 1</span><br />
 
#<span style="color: green">a = 0,5; b = - 2,4; c = - 1</span><br />
 
}}
 
}}
Zeile 66: Zeile 66:
 
{{Arbeiten|  
 
{{Arbeiten|  
 
NUMMER=3|
 
NUMMER=3|
 +
ARBEIT=
 +
Untersuche nun die Funktionen f und g mit f(x) = 1,5x<sup>2</sup> - 6x + 3 und g(x) = 0,5x<sup>2</sup> + x + 2,5
 +
#Zeichne mit Hilfe einer Wertetabelle die Graphen G<sub>f</sub> und G<sub>g</sub> in ein gemeinsames Koordinatensystem.
 +
#Gib die Koordinaten der beiden Scheitel S<sub>f</sub> und S<sub>g</sub> an.
 +
#Vergleiche die beiden Parabeln mit der Normalparabel.
 +
 +
:{{Lösung versteckt|1=
 +
 +
}}
 +
}}
 +
|}
 +
=== Die allgemeine quadratische Funktion in der Anwendung ===
 +
 +
{|border="0" cellspacing="0" cellpadding="4"
 +
|align = "left" width="930"|
 +
{{Arbeiten|
 +
NUMMER=4|
 
ARBEIT=
 
ARBEIT=
 
Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil ('''ax<sup>2</sup>'''), einen linearen Teil ('''bx''') und einen konstanten Teil ('''c''').  
 
Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil ('''ax<sup>2</sup>'''), einen linearen Teil ('''bx''') und einen konstanten Teil ('''c''').  
Zeile 72: Zeile 89:
  
 
Welche Bedeutung hat der konstante Teil des Funktionsterms beim Abbremsen eines Pkw?
 
Welche Bedeutung hat der konstante Teil des Funktionsterms beim Abbremsen eines Pkw?
 
  
 
:{{Lösung versteckt|1=
 
:{{Lösung versteckt|1=

Version vom 28. Februar 2009, 11:00 Uhr

Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen 1 - Anhalteweg - Übungen 2 - Allgemeine quadratische Funktion - Übungen 3 - Abschlusstest


Im vorigen Kapitel hatten wir es mit einer Funktion zu tun, die neben dem reinquadratischen Teil (dem Bremsweg) auch noch einen linearen Teil (den Reaktionsweg) besaß. Den allgemeinsten Fall einer quadratischen Funktion haben wir, wenn die Funktionsgleichung folgende Form hat:

f(x)=ax2+bx+c


  Aufgabe 1  Stift.gif

Experimentiere mit dem Applet und erläutere, welchen Einfluss die Parameter a, b und c auf den Verlauf des Graphen haben.

  1. a bestimmt die Weite und die Öffnung nach oben und unten
  2. b verschiebt den Scheitel
  3. c verschiebt den Scheitel für c > 0 nach oben und für c < 0 nach unten


  Aufgabe 2  Stift.gif

Stelle die drei Schieberegler so ein, dass der schwarze Graph genau auf dem

  1. roten
  2. grünen
  3. blauen

Graphen liegt.

  1. a = 0,5; b = 2,4; c = - 1
  2. a = - 1; b = -3; c = 2
  3. a = 0,5; b = - 2,4; c = - 1



  Aufgabe 3  Stift.gif

Untersuche nun die Funktionen f und g mit f(x) = 1,5x2 - 6x + 3 und g(x) = 0,5x2 + x + 2,5

  1. Zeichne mit Hilfe einer Wertetabelle die Graphen Gf und Gg in ein gemeinsames Koordinatensystem.
  2. Gib die Koordinaten der beiden Scheitel Sf und Sg an.
  3. Vergleiche die beiden Parabeln mit der Normalparabel.

Die allgemeine quadratische Funktion in der Anwendung

  Aufgabe 4  Stift.gif

Der Term einer allgemeinen quadratischen Funktion enthält einen reinquadratischen Teil (ax2), einen linearen Teil (bx) und einen konstanten Teil (c).

Du hast in den vorangegangenen Kapiteln erfahren, dass sich beim Bremsen eines Pkws der Zusammenhang zwischen der Geschwindigkeit und dem zurückgelegten Weg durch eine quadratische Funktion der Form f(x) = ax2 + bx beschreiben lässt, wobei der reinquadratische Teil den Bremsweg und der lineare Teil den Reaktionsweg bestimmt.

Welche Bedeutung hat der konstante Teil des Funktionsterms beim Abbremsen eines Pkw?

Der lineare Teil gibt den Weg an, den das Fahrzeug zurücklegt, bevor die Gefahrensituation eintritt.
Beispiel:
Ein Fahrzeug biegt in eine Straße ein. Nach 30 m sieht der Fahrer, dass vor ihm ein Ball auf die Straße rollt und bremst. Wieviel Meter von der Kreuzung entfernt kommt das Fahrzeug zum Stehen?
Entfernung zur Kreuzung: s = a·v2 + b·v + c mit c = 30m




Maehnrot.jpg

Pfeil.gif   Hier geht es weiter.

Arbeitsblätter