Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus Medienvielfalt-Wiki
K (→Die Graphen von f(x) = a xn, mit a ∈ IR) |
(Lösung zu Aufgabe 5 bearb.) |
||
Zeile 107: | Zeile 107: | ||
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben. | # Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben. | ||
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen. | # Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen. | ||
− | + | <br /> | |
− | + | zu 1.) Lösung: a=-0,5 und n=3. Begründung: An der Stelle <math>x=1</math> ist <math>f(1)=(-0,\!5)\cdot 1^3 = -0,\!5</math> <br /> | |
− | : | + | und an der Stelle <math>x=-2</math> ist <math>f(-2)=(-0,\!5)\cdot (-2)^3 = (-0,\!5)\cdot(-8)=4</math> <br /> |
− | + | zu 2.) Es gibt keine Lösung! <br /> | |
− | + | :: Begründung: <br /> | |
− | :* | + | ::* Die y-Komponente des Punktes A(-1;-1) ist negativ, die des Punktes B(0,5;3) positiv. Also sucht man eine Potenzfunktion <math>f(x)=a\cdot x^n</math> mit ungeradem <math>n</math> (vgl. Aufgabe 2), die monoton steigt. <br /> |
− | : | + | ::* Damit der Funktionsgraph durch A(-1;-1) läuft, muss darin der Parameter <math>a=1</math> sein (vgl. Aufgabe 4). <br /> |
− | :: | + | ::* Damit der Funktionsgraph durch B(0,5;3) läuft, muss <math>f(0,\!5)=a\cdot (0,\!5)^n=3</math> gelten. <br /> |
− | + | :: Zusammengenommen sucht man also nach einer natürlichen Zahl n, die <math>(0,\!5)^n=3</math> erfüllt. Diese kann nicht exisitieren, da <math>(0,\!5)^n \to 1</math> für <math>n \to \infty.</math> | |
}} | }} | ||
|} | |} |
Version vom 31. März 2009, 12:56 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl
|
Die Graphen von f(x) = a xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|
Teste Dein Wissen
Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten. |