Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
(Lösung zu Aufg. 4.2 eingef.) |
K (→Die Graphen von f(x) = a x-n mit a ∈ IR) |
||
| Zeile 137: | Zeile 137: | ||
:* Da die y-Komponente des Punktes A(-1;-1) negativ ist, die des Punktes B(1;3) dagegen positiv, muss die gesuchte Zahl n ungerade sein. | :* Da die y-Komponente des Punktes A(-1;-1) negativ ist, die des Punktes B(1;3) dagegen positiv, muss die gesuchte Zahl n ungerade sein. | ||
:* Wenn der Graph der gesuchten Funktion durch den Punkt A(-1;-1) laufen soll, muss der Parameter <math>a = 1</math> sein. | :* Wenn der Graph der gesuchten Funktion durch den Punkt A(-1;-1) laufen soll, muss der Parameter <math>a = 1</math> sein. | ||
| − | : Zusammengenommen ist die gesuchte Funktion von der Art f(x)=x^{-n} mit ungeradem n. Diese Funktionen haben alle an der Stelle x=1 den Funktionswert f(x)=1. Daher kann es keine Funktion geben, die an der Stelle x=1 den Funktionswert f(x)=3 hat. | + | : Zusammengenommen ist die gesuchte Funktion von der Art <math>f(x)=x^{-n}</math> mit ungeradem n. Diese Funktionen haben alle an der Stelle <math>x=1</math> den Funktionswert <math>f(x)=1.</math> Daher kann es keine Funktion geben, die an der Stelle <math>x=1</math> den Funktionswert <math>f(x)=3</math> hat. |
| − | + | }} | |
}} | }} | ||
|} | |} | ||
Version vom 31. März 2009, 17:19 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen
und
kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
|
Merke:
|
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit
, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
|
Wir betrachten die Funktionen mit f(x) = x-n, n eine natürliche Zahl
|
Die Graphen von f(x) = a x-n mit a ∈ IR
Wir betrachten jetzt die Funktionen mit
, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|
Teste Dein Wissen
- Ordne dem Graphen der Potenzfunktion die richtige Gleichung zu!
- Erkenne die Art der Funktion und ordne dem Graphen die entsprechende Funktionsgleichung zu!
| Als nächstes erfährst du etwas über Potenzfunktionen, die Stammbrüche im Exponenten haben. |
streng monoton steigend und im Intervall
streng monoton fallend.
ist
Da wir hier nur gerade Zahlen
betrachten gilt weiter:
unabhängig von n.
ist
für alle
bzw.
werden die Funktionswerte größer.
-facht.
.
heißt der Graph Normalparabel; für
dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).
ist der Graph zusätzlich achsensymmetrisch zur Geraden
streng monoton fallend.
. Damit sind Definitionsbereich und Wertebereich gleich.
. Da die Zahl n nach Voraussetzung ungerade ist, ist (n-1) eine gerade Zahl. Deswegen ist
für alle betrachteten n.
?
?
. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!
wird der Graph der Funktion gestreckt und wird für
gestaucht.
bleibt er unverändert
wird die Funktion zur Nullfunktion mit
für alle
.
bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
und
Daher kann es keine Funktion geben, die an der Stelle
hat.

