Zugang zur Poissonverteilung: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
− | Dieser Lernpfad bietet einen Einstieg das wichtige Thema "diskrete Wahrscheinlichkeits-, bzw Verteilungsfunktion". | + | {{Information| TITEL = '''Übersicht'''| INFO =Dieser Lernpfad bietet einen Einstieg das wichtige Thema "diskrete Wahrscheinlichkeits-, bzw Verteilungsfunktion". |
− | Die Einführung in das Thema soll am Beispiel einer Unfallstatistik erfolgen, die den funktionalen Zusammenhang zeigt zwischen der Anzahl der Unfälle, in die ein Autofahrer im Laufe seines Lebens verwickelt ist, und der Wahrscheinlichkeit, mit welcher ein Autofahrer diese Unfallanzahl aufweist. | + | Die Einführung in das Thema soll am Beispiel einer Unfallstatistik erfolgen, die den funktionalen Zusammenhang zeigt zwischen der Anzahl der Unfälle, in die ein Autofahrer im Laufe seines Lebens verwickelt ist, und der Wahrscheinlichkeit, mit welcher ein Autofahrer diese Unfallanzahl aufweist.}} |
− | + | ||
---- | ---- | ||
+ | {{Kompetenzen| | ||
− | + | VORHER= | |
− | + | ||
− | + | ||
* Werte einer Tabelle grafisch darstellen und interpretieren | * Werte einer Tabelle grafisch darstellen und interpretieren | ||
* statistische Zentral - und Streuungsmaße berechnen und ihre Bedeutung kennen | * statistische Zentral - und Streuungsmaße berechnen und ihre Bedeutung kennen | ||
* Treppenfunktionen zeichnen und ihren Graph interpretieren | * Treppenfunktionen zeichnen und ihren Graph interpretieren | ||
− | * Parameter variieren und die Auswirkung dieser Variation beschreiben | + | * Parameter variieren und die Auswirkung dieser Variation beschreiben | |
− | + | ||
− | + | ||
− | + | ||
+ | NACHHER= | ||
* Übersetzen von einer Realsituation in ein mathematisches Modell | * Übersetzen von einer Realsituation in ein mathematisches Modell | ||
* grafische Darstellung diskreter Zufallsvariable erkennen | * grafische Darstellung diskreter Zufallsvariable erkennen | ||
Zeile 21: | Zeile 17: | ||
* charakteristische Merkmale einer poissonverteilten Zufallsvariable kennenlernen | * charakteristische Merkmale einer poissonverteilten Zufallsvariable kennenlernen | ||
* Parameter variieren und die Auswirkung dieser Variation beschreiben | * Parameter variieren und die Auswirkung dieser Variation beschreiben | ||
+ | }} | ||
---- | ---- | ||
+ | = Es gibt nur gute Autofahrer, oder? = | ||
+ | |||
+ | == Die Behauptung== | ||
− | |||
Die meisten Autofahrer behaupten von sich, dass ihre Fahrkünste nicht schlechter als durchschnittlich sind. Ist das möglich oder handelt es sich um Selbstüberschätzung? | Die meisten Autofahrer behaupten von sich, dass ihre Fahrkünste nicht schlechter als durchschnittlich sind. Ist das möglich oder handelt es sich um Selbstüberschätzung? | ||
Zeile 33: | Zeile 32: | ||
− | == Statistische Auswertung == | + | == Statistische Auswertung== |
Zeile 104: | Zeile 103: | ||
---- | ---- | ||
− | + | = Der Begriff der Wahrscheinlichkeitsfunktion= | |
Natürlich wirst du sofort als Beurteilung der Sicherheit eines Autofahrers bzw. einer Autofahrerin die Anzahl der Unfälle, in welche die Person im Laufe ihres Lebens verwickelt war, heranziehen. | Natürlich wirst du sofort als Beurteilung der Sicherheit eines Autofahrers bzw. einer Autofahrerin die Anzahl der Unfälle, in welche die Person im Laufe ihres Lebens verwickelt war, heranziehen. | ||
+ | |||
+ | == Die Zufallsvariable== | ||
; Zufallsvariable | ; Zufallsvariable | ||
Zeile 140: | Zeile 141: | ||
---- | ---- | ||
+ | == Die Darstellung mittels relativer Häufigkeiten== | ||
; Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariable | ; Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariable | ||
Zeile 148: | Zeile 150: | ||
---- | ---- | ||
{{Arbeiten|NUMMER=| | {{Arbeiten|NUMMER=| | ||
− | ARBEIT=Beschreibe den Verlauf der Funktionswerte. Macht es Sinn, die einzelnen Werte | + | ARBEIT=Beschreibe den Verlauf der Funktionswerte. Macht es Sinn, die einzelnen Werte miteinander zu verbinden?}} |
Lösung: | Lösung: | ||
Zeile 154: | Zeile 156: | ||
Da Unfälle nur ganzzahlige auftreten können (du kannst nicht 0,3 Unfälle haben) ist es nicht sinnvoll, die einzelnen Werte zu verbinden. Die Wahrscheinlichkeitsfunktion ist deshalb nur für ganzzahlige nicht negative Werte definiert.}} | Da Unfälle nur ganzzahlige auftreten können (du kannst nicht 0,3 Unfälle haben) ist es nicht sinnvoll, die einzelnen Werte zu verbinden. Die Wahrscheinlichkeitsfunktion ist deshalb nur für ganzzahlige nicht negative Werte definiert.}} | ||
---- | ---- | ||
+ | |||
+ | = Die Poissonverteilung= | ||
; Poisson-Verteilung | ; Poisson-Verteilung | ||
− | : Wahrscheinlichkeitsfunktionen mit | + | : Wahrscheinlichkeitsfunktionen mit einer grafischen Darstellung wie jener des Autofahrerbeispiels, wurden nach dem französischen Mathematiker Simeón Denis Poisson (1781–1840) benannt und treten bei sehr seltenen Ereignissen und einer großen Stichprobe auf. Poisson hat erkannt, dass der Verlauf der relativen Häufigkeiten eine Form hat, die an den Graphen folgender Funktion erinnert:<br /><math>f(x)={{e^{{-p\cdot n}}}\cdot (p\cdot n)^x \over x!}</math> , wobei p die Wahrscheinlichkeit darstellt, mit welcher das Ereignis eintritt; n ist die Anzahl der Stichprobengröße |
---- | ---- | ||
Zeile 167: | Zeile 171: | ||
− | + | = Der Begriff der Verteilungsfunktion= | |
In der ursprünglichen Aufgabenstellung interessiert uns nicht die Wahrscheinlichkeit, mit welcher ein Autofahrer im Laufe seines Lebens eine bestimmte Anzahl von Unfällen hat. | In der ursprünglichen Aufgabenstellung interessiert uns nicht die Wahrscheinlichkeit, mit welcher ein Autofahrer im Laufe seines Lebens eine bestimmte Anzahl von Unfällen hat. |
Version vom 13. Oktober 2008, 20:51 Uhr
Beschreibung |
Es fehlt noch eine Beschreibung des Inhalts der Datei (Was zeigt die Datei?). Bitte diese Information noch nachtragen.
|
---|---|
Quelle |
Es fehlt noch die Quelle für die Datei (Woher hat der Uploader die Datei?). Bitte diese Information noch nachtragen.
|
Urheber bzw. Nutzungsrechtinhaber |
Es fehlt noch der Urheber bzw. der Nutzungsrechteinhaber für die Datei (Wer hat die Datei ursprünglich erstellt?). Bitte diese Information noch nachtragen.
|
Kompetenzen
|
Inhaltsverzeichnis |
Es gibt nur gute Autofahrer, oder?
Die Behauptung
Die meisten Autofahrer behaupten von sich, dass ihre Fahrkünste nicht schlechter als durchschnittlich sind. Ist das möglich oder handelt es sich um Selbstüberschätzung? Wie kann man die Fahrkünste überhaupt bewerten? Als Maß der Sicherheit soll die Anzahl der Unfälle gelten, in die ein(e) Fahrer(in) im Laufe des Lebens verwickelt ist.
Statistische Auswertung
Da als Maß der Sicherheit die Anzahl der Unfälle gilt, in die ein(e) Fahrer(in) im Laufe des Lebens verwickelt ist, legen wir unserer Analyse eine Unfallstatistik zugrunde. Du kannst den Zusammenhang selbst untersuchen. Hier sind die Daten, die die Polizei gesammelt hat: Stichprobe: 100 Fahrer
Anzahl der Unfälle | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Personen | 6 | 17 | 23 | 20 | 14 | 9 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
|
Lösung:
Mittelwert: 3,22
Anzahl der Autofahrer mit höchstens 3 Unfällen: 66 von 100, also 66%.
Der Begriff der Wahrscheinlichkeitsfunktion
Natürlich wirst du sofort als Beurteilung der Sicherheit eines Autofahrers bzw. einer Autofahrerin die Anzahl der Unfälle, in welche die Person im Laufe ihres Lebens verwickelt war, heranziehen.
Die Zufallsvariable
- Zufallsvariable
- Eine Zufallsvariable X ordnet jedem Ergebnis eines Zufallsexperimentes verschiedenene, nicht vorhersagbare Zahlen x zu.
In diesem Beispiel ist die Zufallsvariable X das Maß der Sicherheit eines Autofahrers, es werden hier entsprechend die Anzahlen der Unfälle, also die Zahlen 0 bis 20 zugeordnet.
- diskrete Zufallsvariable
- Wenn dabei die zugeordneten Werte abzählbar sind, also einem Zählprozess zugrunde liegen, spricht man von "diskreten Zufallsvariablen".
Finde eigenständig weitere Beispiele für diskrete Zufallsvariable! |
Wir wollen nun versuchen, aus der vorliegenden Stichprobe der Polizei etwas allgemeinere Aussagen treffen zu können. Da es sich um eine Stichprobe mittlerer Größe handelt, ist es sinnvoll, sich die relativen Häufigkeiten genauer anzusehen.
|
Lösung zu 1:
Approximation der (statistischen) Wahrscheinlichkeit mit Hilfe von relativen Häufigkeiten: Nähern sich bei wachsendem Stichprobenumfang die relativen Häufigkeiten des Eintretens eines Ereignisses E einer bestimmten Zahl p(E) so bezeichnet man p(E) als Wahrscheinlichkeit für das Eintreten des Ereignises E. Man schreibt für sehr großes n.
Diese statistische Definition der Wahrscheinlichkeit findet vor allem dann Anwendung, wenn man kein mathematisches Modell zur Berechnung der Wahrscheinlichkeit findet. Es handelt sich um eine empirische Größe, die eine große Versuchsreihe voraussetzt, um einen guten „Schätzwert“ liefern zu können.Lösung zu 2:
Die Darstellung mittels relativer Häufigkeiten
- Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariable
- Unter einer Wahrscheinlichkeitsfunktion f der diskreten Zufallsvariablen X versteht man die Funktion, die den Funktionswerten von X, also den zugeordneten Werten x die Wahrscheinlichkeit p ihres Eintretens zuordnet.
In diesem Beispiel entspricht die grafische Darstellung der relativen Häufigkeiten also einer Wahrscheinlichkeitsfunktion.
Beschreibe den Verlauf der Funktionswerte. Macht es Sinn, die einzelnen Werte miteinander zu verbinden? |
Lösung:
Die Verteilung ist deutlich asymmetrisch, da der Erwartungswert bei 3 Unfällen liegt und die meisten Personen eher in wenige Unfälle verwickelt sind. Größere Unfallanzahlen treten hingegen viel seltener auf.
Da Unfälle nur ganzzahlige auftreten können (du kannst nicht 0,3 Unfälle haben) ist es nicht sinnvoll, die einzelnen Werte zu verbinden. Die Wahrscheinlichkeitsfunktion ist deshalb nur für ganzzahlige nicht negative Werte definiert.Die Poissonverteilung
- Poisson-Verteilung
- Wahrscheinlichkeitsfunktionen mit einer grafischen Darstellung wie jener des Autofahrerbeispiels, wurden nach dem französischen Mathematiker Simeón Denis Poisson (1781–1840) benannt und treten bei sehr seltenen Ereignissen und einer großen Stichprobe auf. Poisson hat erkannt, dass der Verlauf der relativen Häufigkeiten eine Form hat, die an den Graphen folgender Funktion erinnert:
, wobei p die Wahrscheinlichkeit darstellt, mit welcher das Ereignis eintritt; n ist die Anzahl der Stichprobengröße
Finde durch Probieren mit Hilfe von EXCEL eine POISSONVERTEILUNG, die der Wahrscheinlichkeitsfunktion der Autounfälle möglichst nahe kommt. Variiere dabei die Parameter p und n durch Einsetzen der Schieberegler. |
Lösung:
Der Begriff der Verteilungsfunktion
In der ursprünglichen Aufgabenstellung interessiert uns nicht die Wahrscheinlichkeit, mit welcher ein Autofahrer im Laufe seines Lebens eine bestimmte Anzahl von Unfällen hat. Vielmehr interessiert uns die Wahrscheinlichkeit, mit welcher Zufallsvariable Werte annehmen, die nicht größer als ein fest vorgegebener Wert sind, also ein Autofahrer nicht mehr als vier Unfälle im Laufe seines Lebens hat.
|
Lösung zu 1:
Lösung zu 2:
Lösung zu 3:
Lösung zu 4:
Da es bei dieser Darstellung Sprungstellen bei den jeweils ganzzahligen Werten gibt, handelt es sich bei der grafischen Darstellung solcher Verteilungsfunktionen um Treppenfunktionen.
Versuch es selbst:
Beispiele:
Reiter
Kreditrisiko
Interaktive Übungen
Entstanden unter Mitwirkung von: Peter Hofbauer, Heidi Metzger-Schuhäker, Gabi Bleier