Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Die Graphen von f(x) = a*xn, mit a ∈ IR)
(Die Graphen von f(x) = a*xn, mit a ∈ IR)
Zeile 52: Zeile 52:
 
== Die Graphen von f(x) = a*x<sup>n</sup>, mit a <small>&isin;</small> IR ==
 
== Die Graphen von f(x) = a*x<sup>n</sup>, mit a <small>&isin;</small> IR ==
  
'''Wir betrachten jetzt die Funktionen mit f(x) = a*x<sup>n</sup>, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also a <small>&isin;</small> IR  .'''
+
'''Wir betrachten jetzt die Funktionen mit f(x) = a*x<sup>n</sup>, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n <small>&isin;</small> IN,  a <small>&isin;</small> IR  .'''
  
 
{| <!--class="prettytable sortable"-->  
 
{| <!--class="prettytable sortable"-->  

Version vom 5. Januar 2009, 17:00 Uhr

Start -Einführung - 1. Stufe - 2. Stufe - 3. Stufe - 4. Stufe - 5. Stufe

Inhaltsverzeichnis

Die Graphen der Funktionen mit f(x) = xn, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, als n = 2, 4, 6, ..

  Aufgabe 1  Stift.gif
  1. Beschreibe die Graphen! Achte dabei auf
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
 HINWEIS: Mauszeiger auf Graph - rechte Maustaste - "Spur an" anklicken
  1. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x2 zu f(x) = x4, dann die beim Übergang von f(x) = x4 zu f(x) = x6 usw.!
  2. Wie ändern sich die y-Werte bei f(x) = xn, n gerade, wenn der x-Wert ver-k-facht wird? LÖSUNG!


Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit f(x) = xn, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

  Aufgabe 2  Stift.gif
  1. Beschreibe wieder die Graphen! Achte dabei auf
  • Symmetrie
  • Monotonie
  • größte und kleinste Funktionswerte
  1. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe!
  2. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x1 zu f(x) = x3, dann die beim Übergang von f(x) = x3 zu f(x) = x5 usw.!

Teste dein Wissen

  Aufgabe 3  Stift.gif

Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl

  1. Für welches n verläuft der Graph durch den Punkt P(2;32)?
  2. Für welches n verläuft der Graph durch Q(1,5;3,375)?


Die Graphen von f(x) = a*xn, mit a IR

Wir betrachten jetzt die Funktionen mit f(x) = a*xn, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

  Aufgabe 4  Stift.gif
  1. Es sei zunächst n = 2, also f(x) = a*x2. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!
  2. Beschreibe die Veränderung der Graphen mit f(x) = a*xn bei der Veränderung des Parameter a ! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.


  Aufgabe 5  Stift.gif

Wir betrachten wieder die Funktionen mit f(x) = a*xn, n eine natürliche Zahl

  1. Bestimme a und n so, dass der Graph durch die Punkte A(-1,5;1,3) und B(1;-1) verläuft. Nebenstehende Graphik dient als Hilfe. Die Punkte A und B kannst du frei verschieben.
  2. Bestimme a und n so, ....

Teste Dein Wissen