Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus Medienvielfalt-Wiki
Zeile 52: | Zeile 52: | ||
# Für welches n verläuft der Graph durch Q(1,5;3,375)? | # Für welches n verläuft der Graph durch Q(1,5;3,375)? | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
− | :Der Punkt P(2;32) wird für <math>n=5</math> durchlaufen: <math>f (2) = 2^5 = 32</math>.<br> | + | :Der Punkt P(2;32) wird für <math>n=5</math> durchlaufen: <math>f \left( 2 \right ) = 2^5 = 32</math>.<br> |
− | :Der Punkt Q(1,5;3,375) wird für <math>n=3</math> durchlaufen: <math>f (1,5) = 2^3 = 3,375</math>. | + | :Der Punkt Q(1,5;3,375) wird für <math>n=3</math> durchlaufen: <math>f \left( 1,5 \right ) = 2^3 = 3,375</math>. |
}} | }} | ||
}} | }} | ||
Zeile 83: | Zeile 83: | ||
# Bestimme a und n so, dass der Graph durch die Punkte A(-1;-1) und B(0,5;3) verläuft. Was fällt auf? Erkläre deine Beobachtungen. | # Bestimme a und n so, dass der Graph durch die Punkte A(-1;-1) und B(0,5;3) verläuft. Was fällt auf? Erkläre deine Beobachtungen. | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
− | : 1. <math>a = -0.5, | + | : 1. <math>a = -0.5, n = 3</math><br> |
: 2. Es gibt keine Lösung, denn ...}} | : 2. Es gibt keine Lösung, denn ...}} | ||
}}<br> | }}<br> |
Version vom 13. Januar 2009, 19:08 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit f(x) = xn, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl
|
Die Graphen von f(x) = a*xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit f(x) = a*xn, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|