Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
K |
K |
||
Zeile 50: | Zeile 50: | ||
<math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math> | <math>f(x) = \sqrt[n]{x}</math> mit <math>n \in \mathbb{N}</math> und <math>\mathbb{D}=\mathbb{R}_{\geq 0}</math> | ||
+ | |||
+ | ==== Wurzelfunktion auf ganz IR ==== | ||
+ | |||
+ | Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass | ||
+ | |||
+ | <math>g(x):=\begin{cases}\sqrt[n]{x}, &x\geq 0 \\ -\sqrt[n]{-x}, &x<0\end{cases}</math>, dann gilt: IDg = IR. |
Version vom 19. Januar 2009, 16:35 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .
Vergleiche mit Funktionen aus Stufe 2
- Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
- Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?
Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.
Potenzen und Wurzeln
Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel festgelegt über:
Eine Funktion mit der Gleichung mit heißt Wurzelfunktion
Beispiele:
- , aber
- , nicht definiert.
- , aber auch
Der Definitionsbereich
Offenbar kann man zum Beispiel wegen
die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die positiven reelle Zahlen ein, also:
mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass
, dann gilt: IDg = IR.