Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
(Navigationsleiste geändert) |
|||
Zeile 28: | Zeile 28: | ||
<span style="color: RED">XXX ZUSATZINFO EINFÜGEN? XXX (JW)</span> | <span style="color: RED">XXX ZUSATZINFO EINFÜGEN? XXX (JW)</span> | ||
− | Du | + | Du hast nun Potenzfunktionen mit den Gleichungen <math>f(x)=x^n</math> und <math>f(x)=x^{-n}</math> kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen: |
− | Die Graphen von Funktionen | + | Die Graphen von Funktionen mit <math>f(x)=x^n</math> und einer natürlichen Zahl n heißen '''Parabeln''', oder genauer: <math>Parabel n-ter Ordnung</math>. Ist <math>f(x)=x^2</math>, dann heißt der Graph Normalparabel; wenn <math>f(x)=x^3</math> dann nennt man den Graphen '''kubische Grundparabel''' (oder '''Parabel dritter Ordnung'''). |
− | + | ||
− | + | ||
+ | Die Graphen von Funktionen mit <math>f(x)=x^{-n}</math> und einer natürlichen Zahl n heißen '''Hyperbeln (n-ter Ordnung)'''. Diese haben die x- und die y-Achse als Asymptoten. | ||
<span style="color: RED">XXX ZUSATZINFO ENDE XXX (JW)</span> | <span style="color: RED">XXX ZUSATZINFO ENDE XXX (JW)</span> | ||
Version vom 11. Februar 2009, 16:18 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Parabel und Hyperbel
XXX ZUSATZINFO EINFÜGEN? XXX (JW)
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen:
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Parabeln, oder genauer: . Ist , dann heißt der Graph Normalparabel; wenn dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Hyperbeln (n-ter Ordnung). Diese haben die x- und die y-Achse als Asymptoten. XXX ZUSATZINFO ENDE XXX (JW)
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = x-n, n eine natürliche Zahl
|
Die Graphen von f(x) = a*x-n, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|