Quadratische Funktionen - Bremsbeschleunigung: Unterschied zwischen den Versionen
(Anmerkung ergänzt, layout) |
(Verlinkung angepasst) |
||
Zeile 129: | Zeile 129: | ||
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]] | |align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]] | ||
|align = "left"|'''Als nächstes kannst du prüfen, ob du bis jetzt alles verstanden hast.'''<br /> | |align = "left"|'''Als nächstes kannst du prüfen, ob du bis jetzt alles verstanden hast.'''<br /> | ||
− | [[Bild:Pfeil.gif]] [[Quadratische_Funktionen_- | + | [[Bild:Pfeil.gif]] [[Quadratische_Funktionen_-_Übungen1|'''Hier geht es weiter''']]'''.''' |
|} | |} |
Version vom 15. Februar 2009, 19:23 Uhr
Einführung - Bremsweg - Unterschiedliche Straßenverhältnisse - Übungen (1) - Anhalteweg - Übungen (2) - Die allgemeine quadratische Funktion - Abschlusstest
Unterschiedliche Straßenverhältnisse
Bisher waren wir davon ausgegangen, dass die Länge des Bremsweges lediglich von der Geschwindigkeit abhängt. Das ist in der Realität natürlich nicht der Fall. Bei gleicher Geschwindigkeit hat ein alter LKW auf schneeglatter Fahrbahn selbstverständlich einen ungleich längeren Bremsweg als ein neuer Kleinwagen auf einer trockenen und sauberen Straße. Diese Einflüsse kommen in der sogenannten Bremsbeschleunigung zum Ausdruck. Die Bremsbeschleunigung gibt an, wie stark ein Fahrzeug abgebremst wird: Eine hohe Bremsbeschleunigung spricht also für einen kurzen Bremsweg.
In einer Formel für den Bremsweg sollte also nicht nur die Geschwindigkeit, sondern auch die Bremsbeschleunigung berücksichtigt werden. In Lehrbüchern findet man die Formel:
(s = Bremsweg in m, v = Geschwindigkeit in m/s und aB = Bremsbeschleunigung in m/s²).
In dem folgenden GeoGebra-Applet kann der Bremsweg mit Hilfe der beiden Schieberegler oben links variiert werden.
Hinweis: Der Einfachkeit halber wurde der obige Zusammenhang so verändert, dass die Geschwindigkeit in km/h angegeben wird.
Wie muss aB gewählt werden, damit ... Nutze zur Lösung der Aufgabe das obere Applet. Um die Werte exakt einstellen zu können, klicke den Schieberegler an und verwende dann die Pfeiltasten.
zu a) aB = 3,25 m/s2 zu b) aB = 5,71 m/s2 zu c) aB = 1,73 m/s2 |
In der Realität hängt der Wert der Bremsbeschleunigung aB von verschiedenen Faktoren ab. Im folgenden Video wird der Einfluss der Temperatur der Bremsen auf den Bremsweg untersucht. Der Pkw wird immer von einer Geschwindigkeit von 100 km/h bis zum Stillstand abgebremst und dabei der Bremsweg ermittelt.
|
|
Wenn wir die bisherigen Überlegungen verallgemeinern wollen, müssen wir unsere Gleichung für den Bremsweg genauer analysieren.
Zunächst stellen wir fest, dass es eine funktionale Abhängigkeit des Bremsweges von der Geschwindigkeit gibt; wir können unsere Formel als Funktionsgleichung schreiben:
.
Die rechte Seite der Funktionsgleichung besteht aus dem Vorfaktor und dem Quadrat der Variablen. Besonders interessant ist dabei der Einfluss des Vorfaktors auf den Verlauf des Graphen:
Wie ändert sich der Verlauf des Graphen, wenn der Vorfaktor von v2, d.h. wenn kleiner bzw. größer wird?
wird kleiner, wenn aB größer wird. Wenn aB größer wird, verläuft der Graph flacher. Entsprechend wird größer, wenn aB kleiner wird. Wenn aB kleiner wird, verläuft der Graph steiler. |
Merksatz: (Rein-)Quadratische Funktionen
Die Funktionen, die wir bis jetzt betrachtet haben, weisen eine Gemeinsamkeit auf: Ihr Funktionsterm hat die Form Zahl mal Variable im Quadrat. Sie zählen daher zu den quadratischen Funktionen. Die Graphen quadratischer Funktionen unterscheiden sich stark von den Graphen linearer Funktionen (welches ja bekanntlich Geraden sind). Das Applet rechts zeigt den Graphen einer reinquadratischen Funktion, d.h. einer Funktion, deren Funktionsterm die Form ax² hat. Hierbei steht a für eine beliebige reelle Zahl (nicht mehr für die Bremsbeschleunigung!).
|
Merke:
Die Graphen von Funktionen mit der Funktionsgleichung f(x)=ax² heißen Parabeln. Für a>0 gilt: Je größer a ist, desto steiler ist die Parabel. |
Der Graph der Funktion mit der Funktionsgleichung f(x)=x2, also mit a=1 hat eine besondere Bedeutung. Man nennt in Normalparabel. Oft wird der Verlauf einer Parabel über den Vergleich mit der Normalparabel beschrieben. Man sagt z.B.: Die Parabel zur Funktion f mit f(x)=0,5x2 ist flacher als die Normalparabel.
Als nächstes kannst du prüfen, ob du bis jetzt alles verstanden hast. |
Dieser Lernpfad wurde erstellt von:
Reinhard Schmidt, Christian Schmidt, Maria Eirich, Andrea Schellmann und Gabi Jauck |