Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen
(→Teste Dein Wissen) |
K (→Die Graphen von f(x) = a*x-n, mit a ∈ IR) |
||
Zeile 65: | Zeile 65: | ||
}} | }} | ||
− | == Die Graphen von f(x) = a | + | == Die Graphen von f(x) = a x<sup>-n</sup>, mit a <small>∈</small> IR == |
'''Wir betrachten jetzt die Funktionen mit <math>f(x) = a \cdot x^{-n} </math>, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n <small>∈</small> IN, a <small>∈</small> IR .''' | '''Wir betrachten jetzt die Funktionen mit <math>f(x) = a \cdot x^{-n} </math>, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n <small>∈</small> IN, a <small>∈</small> IR .''' |
Version vom 23. Februar 2009, 10:27 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-n, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Parabel und Hyperbel
Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle. Sie haben deshalb eigene Bezeichnungen:
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Parabeln, oder genauer: Parabel n-ter Ordnung.
Für heißt der Graph Normalparabel; für dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).
Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Hyperbeln (n-ter Ordnung). Diese haben die x- und die y-Achse als Asymptoten.
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = x-n, n eine natürliche Zahl
|
Die Graphen von f(x) = a x-n, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|