Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus Medienvielfalt-Wiki
(Lösung zu Aufgabe 5 erstellt) |
(→Die Graphen von f(x) = a xn, mit a ∈ IR) |
||
Zeile 107: | Zeile 107: | ||
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben. | # Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben. | ||
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen. | # Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen. | ||
− | |||
− | |||
− | |||
− | |||
+ | }} | ||
|} | |} | ||
Zeile 117: | Zeile 114: | ||
* [http://www.realmath.de/Neues/Klasse10/potenzfunktion/ggbxhochn.html Betrachte den Graphen und finde die richtigen Aussagen!] | * [http://www.realmath.de/Neues/Klasse10/potenzfunktion/ggbxhochn.html Betrachte den Graphen und finde die richtigen Aussagen!] | ||
− | + | <br /> | |
---- | ---- | ||
{|border="0" cellspacing="0" cellpadding="4" | {|border="0" cellspacing="0" cellpadding="4" |
Version vom 31. März 2009, 12:29 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl
|
Die Graphen von f(x) = a xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|
Teste Dein Wissen
Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten. |