Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen
Aus Medienvielfalt-Wiki
(Lösung zu Aufgabe 5: Layout) |
(Aufgabe 1.3 Lösung ergänzt) |
||
Zeile 22: | Zeile 22: | ||
:* Die Graphen sind stets Achsensymmetrisch zur y-Achse. | :* Die Graphen sind stets Achsensymmetrisch zur y-Achse. | ||
:* Für <math>n>1</math> sind alle Graphen im Intervall ]-∞,0[ streng monoton fallend, im Intervall ]0,∞[ streng monoton steigend; die Graphen verlaufen durch den Ursprung (0;0) und 0 ist der kleinste Funktionswert. Ein größter Funktionswert wird nicht angenommen.<br /> | :* Für <math>n>1</math> sind alle Graphen im Intervall ]-∞,0[ streng monoton fallend, im Intervall ]0,∞[ streng monoton steigend; die Graphen verlaufen durch den Ursprung (0;0) und 0 ist der kleinste Funktionswert. Ein größter Funktionswert wird nicht angenommen.<br /> | ||
+ | :<br /> | ||
:zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam. | :zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam. | ||
:* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach Defition der Potenzen. Alle anderen Exponenten <math>\textstyle n \in \{2,4,6,8,10,...\}</math> sind Vielfache von 2, also von der Art <math>2 \cdot k</math> für alle <math>k \in {\Bbb N}</math>; dann gilt: <math>(-1)^n=(-1)^{2 \cdot k}= 1^k = 1</math> für alle <math>k \in {\Bbb N}.</math> | :* Begründung für Punkt (-1;1): Für den Fall <math>n=0</math> gilt <math>(-1)^0=1</math> nach Defition der Potenzen. Alle anderen Exponenten <math>\textstyle n \in \{2,4,6,8,10,...\}</math> sind Vielfache von 2, also von der Art <math>2 \cdot k</math> für alle <math>k \in {\Bbb N}</math>; dann gilt: <math>(-1)^n=(-1)^{2 \cdot k}= 1^k = 1</math> für alle <math>k \in {\Bbb N}.</math> | ||
:* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>. | :* Begründung für Punkt (1;1): Für beliebige <math>r \in {\Bbb R}</math> ist <math>1^r = r</math> und damit insbesondere für <math>r \in {\Bbb N}</math>. | ||
− | :zu 3.) | + | :<br /> |
+ | :zu 3.) Die Punkte (-1;1) und (1;1) bleiben unverändert. | ||
+ | :: Dazwischen, genauer in den Intervallen ]-1;0[ und ]0;1[ werden die Fuktionswerte kleiner, an den Stellen x für <math>x< -1</math> bzw. <math>x > 1</math> werden die Funktionswerte größer. | ||
+ | :<br /> | ||
:zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br> | :zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-k<sup>n</sup>-facht. <br> | ||
: Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>. | : Symbolisch <math>f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x)</math>. |
Version vom 31. März 2009, 15:31 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = xn, n ∈ IN
Gerade Potenzen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...
|
Ungerade Potenzen
Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
|
Teste dein Wissen
Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl
|
Die Graphen von f(x) = a xn, mit a ∈ IR
Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n ∈ IN, a ∈ IR .
|
|
Teste Dein Wissen
Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten. |