Rechnerische Beziehung zwischen der Exponentialfunktion und der Logarithmusfunktion: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe eingefügt)
(Merksatz eingefügt)
Zeile 5: Zeile 5:
 
'''b = a<sup>x</sup>  -->  x = log<sub>a</sub>b'''
 
'''b = a<sup>x</sup>  -->  x = log<sub>a</sub>b'''
  
Der Ausdruck x = log<sub>a</sub>b heißt gesprochen: '''x''' ist gleich dem Logaritmus '''b''' zur Basis '''a''', wobei '''<span style="color: #00008B">x</span>''' der '''<span style="color: #00008B">Exponent</span>''' ist, '''<span style="color: #008B00">b</span>''' der '''<span style="color: #008B00">Logarithmand</span>''' ist und '''<span style="color: #8B3A3A">a</span>''' die '''<span style="color: #8B3A3A">Basis</span>''' ist.
+
{{Merksatz|MERK=Der Ausdruck x = log<sub>a</sub>b heißt gesprochen: '''x''' ist gleich dem Logaritmus '''b''' zur Basis '''a''', wobei '''<span style="color: #00008B">x</span>''' der '''<span style="color: #00008B">Exponent</span>''' ist, '''<span style="color: #008B00">b</span>''' der '''<span style="color: #008B00">Logarithmand</span>''' ist und '''<span style="color: #8B3A3A">a</span>''' die '''<span style="color: #8B3A3A">Basis</span>''' ist.
 +
}}
 +
 
  
  

Version vom 13. Januar 2010, 17:33 Uhr

Rechnerische Beziehung zwischen der Exponentialfunktion und der Logarithmusfunktion

Willst du nun rechnerisch eine Aufgabe vom Typ b = ax nach x auflösen, musst du folgendermaßen vorgehen:

b = ax --> x = logab

Maehnrot.jpg
Merke:

Der Ausdruck x = logab heißt gesprochen: x ist gleich dem Logaritmus b zur Basis a, wobei x der Exponent ist, b der Logarithmand ist und a die Basis ist.


Beispiel: 8 = 2x --> x = log28

In diesm einfachen Beispiel sieht man, dass die Lösung für x = 3 ist, da 23 = 8, also 3 = log28.


  Aufgabe   Stift.gif

Löse die folgenden Aufgaben mit Hilfe des Logarithmusrechners unter dem folgenden Link: [1] Löse die Aufgaben zuvor (wie oben) nach x auf und rechne x mit Hilfe des Logarithmusrechners aus.

  1. 10x = 10000
  2. 8x = 262144
  3. 15x = 759375