Quadratische Funktionen - Anhalteweg: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Experimentieren mit einem Applet zum Anhalteweg)
(Experimentieren mit einem Applet zum Anhalteweg)
Zeile 41: Zeile 41:
 
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
 
|align = "left" width="120"|[[Bild:Maehnrot.jpg|100px]]
 
|align = "left"|'''Als nächstes kannst du prüfen, ob du alles verstanden hast.'''<br />  
 
|align = "left"|'''Als nächstes kannst du prüfen, ob du alles verstanden hast.'''<br />  
=> [[Quadratische_Funktionen_-_Übungen|'''Hier geht es weiter''']]'''.'''
+
[[Bild:Pfeil.gif]] &nbsp; [[Quadratische_Funktionen_-_Übungen|'''Hier geht es weiter''']]'''.'''
  
 
|}
 
|}

Version vom 6. Oktober 2008, 10:57 Uhr

|Einführung|Bremsweg|Unterschiedliche Straßenverhältnisse|Anhalteweg|Übungen|

Der Anhalteweg

Wir haben oben gesehen, dass man selbst bei relativ moderaten Geschwindigkeiten mit beachtlichen Bremswegen rechnen muss. Dabei blieb jedoch noch unberücksichtigt, dass der Anhalteweg nicht allein der reine Bremsweg ist, sondern dass zum Bremsweg auch noch der sogenannte Reaktionsweg hinzukommt.
Der Bremsweg ist derjenige Weg, den das Fahrzeug vom Beginn des Bremsvorgangs bis zum Stillstand zurücklegt. Er berücksichtigt also nicht, dass man nach dem Auftreten des Hindernisses eine gewisse Zeit (die Reaktionszeit) benötigt, bis man überhaupt reagieren kann und bremst. Der Weg, den das Fahrzeug angesichts der Reaktionszeit noch ungebremst zurücklegt, nennt man Reaktionsweg.


  Aufgabe   Stift.gif

a) Man kann davon ausgehen, dass die Reaktionszeit bei einem gewöhnlichen Autofahrer nicht länger ist als eine Sekunde. Berechne den Reaktionsweg, der sich bei einer Geschwindigkeit von

(1) 30 km/h,   (2) 50 km/h,   (3) 100 km/h

aus einer Reaktionszeit von einer Sekunde ergibt.
b) Ermittle eine Formel, mit Hilfe derer man den Reaktionsweg aus der Geschwindigkeit berechnen kann. Geh dabei wieder von einer Reaktionszeit von einer Sekunde aus.
c) Ermittle eine möglichst einfache Formel, mit Hilfe derer man den Anhalteweg aus der Geschwindigkeit berechnen kann.
d) In der Fahrschule lernt man folgende Formeln:

Reaktionsweg = Geschwindigkeit durch 10 mal drei
Bremsweg = Geschwindigkeit durch 10 mal Geschwindigkeit durch 10
Anhalteweg = Reaktionsweg + Bremsweg

Vergleiche die Fahrschulformeln mit deinen bisherigen Ergebnissen.

Experimentieren mit einem Applet zum Anhalteweg

Im folgenden Applet ist der Zusammenhang zwischen Geschwindigkeit und Anhalteweg dargestellt worden. Mit Hilfe der Schieberegler können Geschwindigkeit, Bremsbeschleunigung und Reaktionszeit variiert werden.


 

  Aufgabe   Stift.gif

a) Experimentiere mit dem Applet.
b) Beschreibe, welchen Einfluss Geschwindigkeit, Bremsbeschleunigung und Reaktionszeit auf den Anhalteweg haben.
c) Bei welchem Wert für a ist der Anhalteweg bei einer Geschwindigkeit von 70 km/h und einer Reationszeit von 1,5 s ungefähr 70 m lang?



Maehnrot.jpg Als nächstes kannst du prüfen, ob du alles verstanden hast.

Pfeil.gif   Hier geht es weiter.


 

Team.gif
Dieser Lernpfad wurde erstellt von:

Reinhard Schmidt, Christian Schmidt, Maria Eirich, Andrea Schellmann und Gabi Jauck