Diskret - kontinuierlich
Über diesen Lernpfad
Schüler/innen sollen sich mit der Beschreibung von dynamischen Vorgängen beschäftigen und den Unterschied zwischen diskreten Vorgängen (Beschreibung über Differenzengleichungen) und kontinuierlichen Vorgängen (Beschreibung über Differentialgleichungen) kennen lernen. Kompetenzen
|
Inhaltsverzeichnis |
Rekursive Beschreibung von Veränderungen
Numerische Näherung - Heronverfahren
Radioaktiver Zerfall
Räuber-Beute-Modell
Differenzengleichung
Begriffsbildung
Eine Differenzengleichung ist eine Möglichkeit, dynamische Systeme abzubilden. Dabei wird eine Folge von diskreten (einzeln betrachtbaren - "abzählbaren") Ereignissen rekursiv definiert. Jedes Folgenglied ist daher eine Funktion der vorhergehenden Folgenglieder.
Form:
für natürliche Zahlen n.
Die Veränderung wird durch den Differenzenquotienten angegeben:
mit N
Dabei entspricht:
und damit beispielsweise
Links:
- http://statmath.wu-wien.ac.at/~leydold/MOK/HTML/node187.html, Josef Leydold, Abt. f. angewandte Statistik und Datenverarbeitung, 1997
Marktgleichgewicht - Cobweb-DIagramm
Cobweb / Spinnwebdiagramme stellen eine gute Möglichkeit dar, Rekursionen darzustellen. Links:
- Spinnwebdiagramme - Lineare Differenzengleichungen 1. Ordnung mit GeoGebra: http://www.geogebra.org/de/wiki/index.php/Lineare_Differenzengleichung_1._Ordnung
Von der diskreten zur kontinuierlichen Veränderung
Exponentielles Wachstum - Lebensmittelkontrolle
Radioaktiver Zerfall - analytische Herleitung
Gegeben ist die Funktion . Es gilt FE. |
Aufgaben im pdf-Format
Die Angaben zu den Aufgaben findet man unter Integrationsmethoden_mv.pdf (41 kb).
Lösungen im pdf-Format
Die Lösungen zu diesen Aufgaben findet man unter Lösungen zu Integrationsmethoden_mv.pdf (117 kb).