Die Graphen der Funktionen mit f(x) = xn, n Element der natürlichen Zahlen
Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, als n = 2, 4, 6, ..
Aufgabe 1
- Beschreibe die Graphen Achte dabei auf
- Symmetrie
- Monotonie
- größte und kleinste Funktionswerte
- Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
- Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x2 zu f(x) = x4, dann die vom Übergang von n = 4 zu n = 6 usw.!
- Wie ändern sich die y-Werte bei f(x) = x2, wenn der x-Wert ver-k-facht wird? LÖSUNG!
|
Wir betrachten nun die Graphen der Funktionen mit f(x) = xn, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..
Aufgabe 1
- Beschreibe wieder die Graphen Achte dabei auf
- Symmetrie
- Monotonie
- größte und kleinste Funktionswerte
- Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe!
- Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x1 zu f(x) = x3, dann die vom Übergang von n = 3 zu n = 5 usw.!
|
TESTE dein Wissen
Aufgabe 1
Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl
- Für welches n verläuft der Graph durch den Punkt P(2;32)?
- Für welches n verläuft der Graph durch Q(1,5;3,375)?
|
Aufgabe 1
- Wir betrachten die Graphen zu f(x) = a*x2, also n = 2. Beschreibe die Veränderung des Graphen bei der Veränderung des Parameters a!
- Beschreibe die Veränderung der Graphen mit f(x) = a*xn bei der Veränderung des Parameter a ! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.
|