Potenzfunktionen - 3. Stufe

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Start - Einführung - 1. Stufe - 2. Stufe - 3. Stufe - 4. Stufe - 5. Stufe

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form \frac{1}{n} mit n \in \mathbb{N} als Exponenten haben.

Potenzen und Wurzeln

Potenzfunktionen der Bauart f(x)=x^{\frac{1}{n}} und Wurzelfunktionen g(x)=\sqrt[n]{x} hängen eng zusammen, denn es gilt:

x^{\frac{1}{n}}:=\sqrt[n]{x}

Darin ist die n-te Wurzel festgelegt über:

\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x