Potenzfunktionen - 3. Stufe
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x1/n, n ∈ IN
Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit
als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche:
.
Vergleich mit Funktionen aus Stufe 2
|
neue Datei datei
Potenzen und Wurzeln
Eine Funktion mit der Gleichung
mit
heißt Wurzelfunktion.
Potenzfunktionen der Bauart und Wurzelfunktionen
hängen eng zusammen, denn es gilt:
Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:
Beispiele:
-
, aber
-
, nicht definiert.
-
, aber auch
Definitionsbereich der Wurzelfunktionen
Einschränkung auf IR+
Offenbar kann man zum Beispiel wegen
-
, und
-
die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:
Um solche Fälle von Nicht-Eindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:
mit
und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass
. Dann gilt: IDg = IR.