Potenzfunktionen - 1. Stufe: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Die Graphen von f(x) = a xn, mit a ∈ IR)
K (Die Graphen von f(x) = a xn, mit a ∈ IR)
Zeile 107: Zeile 107:
 
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben.
 
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-2;4)''' und '''B(1;-0,5)''' verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben.
 
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen.
 
# Bestimme a und n so, dass der Graph durch die Punkte '''A(-1;-1)''' und '''B(0,5;3)''' verläuft. Was fällt auf? Erkläre deine Beobachtungen.
 
+
{{ Lösung versteckt |
 +
: zu 1.)
 +
:* Für <math>1 < a</math> wird der Graph der Funktion gestreckt und wird für <math>0<a<1</math> gestaucht.
 +
:* Für <math>a=1</math> bleibt er unverändert
 +
:* Für <math>a=0</math> wird die Funktion zur ''Nullfunktion'' mit <math>f(x)=0</math> für alle <math>x</math>.
 +
:* Der Wert <math>a=-1</math> bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
 +
: zu 2.)
 +
:: Die Beobachtungen aus 1.) übertragen sich auch für beliebige Exponenten.
 +
}}
 
}}
 
}}
 
|}
 
|}

Version vom 31. März 2009, 13:31 Uhr

Start - Einführung - 1. Stufe - 2. Stufe - 3. Stufe - 4. Stufe - Test

Inhaltsverzeichnis

Die Graphen der Funktionen mit f(x) = xn, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = xn, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

  Aufgabe 1  Stift.gif
  1. Mit dem Schieberegler kannst du den Exponenten verändern. Beschreibe Gemeinsamkeiten und Unterschiede der Graphen! Achte dabei auf
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe! Zur Hilfe kannst du auch die Schar der Graphen zeichnen lassen.
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen 
  3. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x2 zu f(x) = x4, dann die beim Übergang von f(x) = x4 zu f(x) = x6 usw.!
  4. Wie ändern sich die y-Werte bei f(x) = xn, n gerade, wenn der x-Wert ver-k-facht wird?
zu 1.) Wir betrachten hier Exponenten n \in \{0,2,4,6,...\}. Dann gilt:
  • Die Funktionen haben stets positive Funktionswerte.
  • Die Graphen sind stets Achsensymmetrisch zur y-Achse.
  • Für n>1 sind alle Graphen im Intervall ]-∞,0[ streng monoton fallend, im Intervall ]0,∞[ streng monoton steigend; die Graphen verlaufen durch den Ursprung (0;0) und 0 ist der kleinste Funktionswert. Ein größter Funktionswert wird nicht angenommen.
zu 2.) Alle Graphen haben die Punkte (-1;1) und (1;1) gemeinsam.
  • Begründung für Punkt (-1;1): Für den Fall n=0 gilt (-1)^0=1 nach Defition der Potenzen. Alle anderen Exponenten \textstyle n \in \{2,4,6,8,10,...\} sind Vielfache von 2, also von der Art 2 \cdot k für alle k \in {\Bbb N}; dann gilt: (-1)^n=(-1)^{2 \cdot k}= 1^k = 1 für alle k \in {\Bbb N}.
  • Begründung für Punkt (1;1): Für beliebige r \in {\Bbb R} ist 1^r = r und damit insbesondere für r \in {\Bbb N}.
zu 3.) Was will man denn hier hören? XXX
zu 4.) Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-kn-facht.
Symbolisch f(k \cdot x) = (kx)^n = k^n \cdot x^n = k^n \cdot f(x).


Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit f(x) = x^n, wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

  Aufgabe 2  Stift.gif
  1. Beschreibe wieder die Graphen! Achte dabei auf
    • Symmetrie
    • Monotonie
    • größte und kleinste Funktionswerte
  2. Gibt es Punkte, die allen Graphen gemeinsam sind? Begründe!
    HINWEIS: Rechtsklick auf Graph - "Spur an" auswählen
  3. Beschreibe die Veränderung der Graphen beim Übergang von f(x) = x1 zu f(x) = x3, dann die beim Übergang von f(x) = x3 zu f(x) = x5 usw.!
zu 1) Wir betrachten hier Exponenten n\in\{1,3,5,7,...\}. Dann gilt:
  • Die Graphen der Potenzfunktionen sind alle Punktsymmetrisch zum Ursprung (0;0)
  • Die Graphen der Potenzfunktionen sind alle monoton steigend; Beachte: für n\in\{3,5,7,...\} haben die Funktionen im Ursprung einen Terassen- bzw. Sattelpunkt, sind dort also nicht streng-monoton steigend.
  • Der Wertebereich der Funktion ist ganz {\Bbb R}, alle Werte werden durchlaufen (die Funktion ist damit surjektiv).
zu 2) Man findet die drei Punkte (-1;-1), (0;0) und (1;1) unabhängig von n in allen Graphen.
Begründung für den Punkt (-1;-1): An der Stelle x=-1 ist f(x)=f(-1)=(-1)^n=(-1)\cdot(-1)^{n-1}. Da n nach Voraussetzung ungerade ist, ist n-1 eine gerade Zahl. Deswegen gilt weiter: (-1)\cdot(-1)^{n-1}=(-1)\cdot 1 = -1.
Begründung für die Punkte (0;0) und (1;1): Es gilt 0^r = 0 und 1^r=1 für alle r \in \mathbb{R}\backslash\{0 \}.

Teste dein Wissen

  Aufgabe 3  Stift.gif

Wir betrachten die Funktionen mit f(x) = xn, n eine natürliche Zahl

  1. Für welches n verläuft der Graph durch den Punkt P(2;32)?
  2. Für welches n verläuft der Graph durch Q(1,5;3,375)?
Der Punkt P(2;32) wird für n=5 durchlaufen: f \left( 2 \right ) = 2^5 = 32.
Der Punkt Q(1,5;3,375) wird für n=3 durchlaufen: f \left( 1,\!5 \right ) = \left( 1,\!5 \right )^3 = 3,\!375.


Die Graphen von f(x) = a xn, mit a IR

Wir betrachten jetzt die Funktionen mit f(x) = a \cdot x^n, wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

  Aufgabe 4  Stift.gif
  1. Es sei zunächst n = 2, also f(x) = a \cdot x^2. Beschreibe die Veränderung des Graphen von f bei der Veränderung des Parameters a!
  2. Beschreibe die Veränderung der Graphen mit f(x) = a \cdot x^n bei der Veränderung des Parameter a! Unterscheide dabei wieder zwischen geraden und ungeraden Exponenten.

zu 1.)
  • Für 1 < a wird der Graph der Funktion gestreckt und wird für 0<a<1 gestaucht.
  • Für a=1 bleibt er unverändert
  • Für a=0 wird die Funktion zur Nullfunktion mit f(x)=0 für alle x.
  • Der Wert a=-1 bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
zu 2.)
Die Beobachtungen aus 1.) übertragen sich auch für beliebige Exponenten.


  Aufgabe 5  Stift.gif

Wir betrachten wieder die Funktionen mit f(x) = a \cdot x^n, n eine natürliche Zahl

  1. Bestimme a und n so, dass der Graph durch die Punkte A(-2;4) und B(1;-0,5) verläuft. Die nebenstehende Graphik dient als Hilfe; die Punkte A und B lassen sich darin frei verschieben.
  2. Bestimme a und n so, dass der Graph durch die Punkte A(-1;-1) und B(0,5;3) verläuft. Was fällt auf? Erkläre deine Beobachtungen.

zu 1.)
  • Für 1 < a wird der Graph der Funktion gestreckt und wird für 0<a<1 gestaucht.
  • Für a=1 bleibt er unverändert
  • Für a=0 wird die Funktion zur Nullfunktion mit f(x)=0 für alle x.
  • Der Wert a=-1 bewirkt eine Spiegelung des Graphen an der x-Achse; alle übrigen Fälle ergeben sich daraus.
zu 2.)
Die Beobachtungen aus 1.) übertragen sich auch für beliebige Exponenten.

Teste Dein Wissen



Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen mit negativen ganzzahligen Exponenten.

Pfeil.gif   Hier geht es weiter.