Radioaktiver Zerfall - analytische Herleitung und Beispiele: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
Die Gleichung <math>N(t)=N_{0} \cdot e^{-\lambda \cdot t}</math> ist eine der bekanntesten der Mathematik und wird in der zehnten Schulstufe eingeführt. In der zwölften Schulstufe ist es nun mit Hilfe der Integralrechung möglich, ausgehend vom Ansatz <math>N(t)'=-N(t) \cdot \lambda</math> obige Relation per Differentialgleichung analytisch herzuleiten.
 
Die Gleichung <math>N(t)=N_{0} \cdot e^{-\lambda \cdot t}</math> ist eine der bekanntesten der Mathematik und wird in der zehnten Schulstufe eingeführt. In der zwölften Schulstufe ist es nun mit Hilfe der Integralrechung möglich, ausgehend vom Ansatz <math>N(t)'=-N(t) \cdot \lambda</math> obige Relation per Differentialgleichung analytisch herzuleiten.
Unter  [[:Bild:Rad_zerfall_analytisch.pdf| '''Rad_zerfall_analytisch.pdf''']] ist diese Herleitung Schritt für Schritt nachvollziehbar. Zuerst wird der allgemeine Fall besprochen und dann der Bezug auf die Anwendung beim radioaktiven Zerfall hergestellt.
+
[[:Bild:Rad_zerfall_analytisch.pdf| '''Hier''']] (pdf-Datei, 85 kB) ist diese Herleitung Schritt für Schritt nachvollziehbar. Zuerst wird der allgemeine Fall besprochen und dann der Bezug auf die Anwendung beim radioaktiven Zerfall hergestellt.
  
 
Zusätzlich sind drei Standardaufgaben angegeben, um die Verwendung der Gleichung zu wiederholen.
 
Zusätzlich sind drei Standardaufgaben angegeben, um die Verwendung der Gleichung zu wiederholen.

Version vom 22. August 2011, 12:20 Uhr

Die Gleichung N(t)=N_{0} \cdot e^{-\lambda \cdot t} ist eine der bekanntesten der Mathematik und wird in der zehnten Schulstufe eingeführt. In der zwölften Schulstufe ist es nun mit Hilfe der Integralrechung möglich, ausgehend vom Ansatz N(t)'=-N(t) \cdot \lambda obige Relation per Differentialgleichung analytisch herzuleiten. Hier (pdf-Datei, 85 kB) ist diese Herleitung Schritt für Schritt nachvollziehbar. Zuerst wird der allgemeine Fall besprochen und dann der Bezug auf die Anwendung beim radioaktiven Zerfall hergestellt.

Zusätzlich sind drei Standardaufgaben angegeben, um die Verwendung der Gleichung zu wiederholen.

Beispiele zum radioaktiven Zerfall

Maehnrot.jpg
Merke:

Halbwertszeit: Der Zeitraum, in dem eine (meist exponentiell) abfallende Größe auf die Hälfte ihres Anfangswertes abgesunken ist. Die physikalische Halbwertszeit ist die für jedes Isotop eines radioaktiven Elementes charakteristische Zeitdauer, in der von einer ursprünglichen vorhandenen Anzahl radioaktiver Kerne bzw. instabilen Elementarteilchen die Hälfte zerfallen ist (entnommen aus Brockhaus in 5 Bänden, zweiter Band).

  Aufgabe 1  Stift.gif

Jod-131 hat eine Halbwertszeit von 8 Tagen. Berechne den Parameter λ (Basiszeiteinheit 1 Tag und 1 Jahr) in der Zerfallsgleichung auf 6 gültige Nachkommastellen!


  Aufgabe 2  Stift.gif

Von Kobalt-60 ist nach 3,88 Jahren 40% des Ausgangsmaterials zerfallen. Wie groß ist die Halbwertszeit dieses Isotops?


  Aufgabe 3  Stift.gif

Von 24000 Cäsium-137-Kernen sind nach einer bestimmten Zeit \,t 21771 Kerne zerfallen. Die Halbwertszeit des Isotops beträgt 2,1 Jahre. Berechne \,t!


Aufgaben im pdf-Format


Die Angaben zu den Aufgaben findet man unter Bsp_rad_zerfall.pdf (43 kb).


Lösungen im pdf-Format


Die Lösungen zu diesen Aufgaben findet man unter Lösungen zu Bsp_rad_zerfall.pdf (59 kb).

Zurück zum Lernpfad