Rationale Funktionen Asymptoten: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „{{Merke| Eine Gerade <math> y = mx + t</math> heißt Asymptote für <math>x \rightarrow \infty</math> zum Graph der Funktion <math>f</math>, wenn <math>\lim_{x \t…“)
 
 
Zeile 8: Zeile 8:
  
 
{{Aufgabe|1=
 
{{Aufgabe|1=
Wir betrachten im folgenden Applet die Funktion <math>f:x\rightarrow 0,5\frac{x^n}{(x-1)^3}</math> für  n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern.  
+
Im folgenden Applet betrachten wir die Funktion <math>f:x\rightarrow 0,5\frac{x^n}{(x-1)^3}</math> für  n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern.  
  
 
Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen?
 
Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen?

Aktuelle Version vom 12. Februar 2013, 12:35 Uhr

Nuvola apps kig.png   Merke

Eine Gerade  y = mx + t heißt Asymptote für x \rightarrow \infty zum Graph der Funktion f, wenn \lim_{x \to \infty}[f(x)-(mx+t)]=0 ist.

Anschaulich kann man es sich so vorstellen, dass der Graph und die Gerade für x \rightarrow \infty beliebig nahe kommen ohne sich zu schneiden.

Wir betrachten nun Asymptoten für gebrochen rationale Funktionen f:x \rightarrow \frac{a_n x^n+...+a_0}{b_m x^m + ... + b_0} im maximalen Definitionsbereich.

Stift.gif   Aufgabe

Im folgenden Applet betrachten wir die Funktion f:x\rightarrow 0,5\frac{x^n}{(x-1)^3} für n = 1, 2, 3, 4. In dem Applet kann man mit dem Schieberegler den Exponenten von x im Zählerpolynom ändern.

Was kannst du über die Asymptoten mit Änderung des Zählerexponenten aussagen?



Nuvola apps kig.png   Merke

Bezeichnet z den Grad den Zählerpolynoms und n den Grad des Nennerpolynoms, dann gilt:

  • Ist z < n, dann ist für x \rightarrow \pm \infty die x-Achse  y = 0 Asymptote.
  • Ist z = n und ist a_n der Koeffizient von x^n im Zählerpolynom und b_n der Koeffizient von x^n im Nennerpolynom, dann ist für x \rightarrow \pm \infty die Gerade y = \frac{a_n}{b_n} Asymptote.
  • Ist z = n+1,dann kann man mittels Polynomdivision den Bruch in einen linearen Term mx+t und einen Restbruch umwandeln. Der lineare Term y = mx+t gibt die Asymptote an.
  • Ist z > n+1, dann hat der Graph von f eine asymptotische Kurve.

Im folgenden Applet ist eine ähnliche Funktionenschar wie oben dargestellt: f:x\rightarrow 0,5\frac{x^n}{(x-1)^2} für n = 1, 2, 3, 4. Der Grad des Nennerpolynoms ist diesmal 2.
n lässt sich wieder mit dem Schieberegler variieren.

Da das Nennerpolynom Grad 2 hat sieht man für n = 4 die asymptotische Parabel, an die sich der Graph für  x \rightarrow \pm \infty annähert.

Hier sind die Überlegungen nochmals zusammengefasst.
Zusammenfassung mit Beispielen: