Rationale Funktionen Einführung: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
 
(9 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
Astronauten, die von einer Raumstation,welche in der Höhe h um Erde kreist, auf die Erde blicken, sehen eine Kugelhaube.  
+
Astronauten, die von einer Raumstation,welche in der Höhe x um die Erde kreist, auf die Erde blicken, sehen eine Kugelhaube.  
  
<center>[[Datei:Erde_tangenten.jpg|400px]]</center>
+
<center>[[Datei:Erde_tangenten.jpg|300px]]</center>
  
  
 
{{Aufgabe|
 
{{Aufgabe|
Die Mantelfläche <math>M</math> der Kugelhaube ist <math>M = 2\pi R l</math> wobei <math>R</math> der Erdradius 6370km und <math>l</math> die Länge der Strecke [CD] ist.  
+
Die Mantelfläche <math>M</math> der Kugelhaube ist <math>M = 2\pi R h</math> wobei <math>R</math> der Erdradius <math>R = 6370 km</math> und <math>h</math> die Länge der Strecke [CD] ist.  
 +
 
 +
1. Zeige, dass die Mantelfläche <math>M</math> in Abhängigkeit der Höhe <math>x</math> sich zu <math>M=\frac{2\pi R^2h}{R+x}</math> ergibt.
 +
 
 +
Die Höhe <math>x</math> ist die Variable für die Mantelfläche <math>M</math>.
 +
 
 +
2. a) Bestimme die Definitionsmenge.
 +
 
 +
b) Welchen Wert dürftest du nicht für x einsetzen?
 +
 
 +
c) Welcher Grenzwert ergibt sich für die Mantelfläche <math> M</math> für <math> x \rightarrow \infty</math>?
 +
 
 +
}}
  
Zeige, dass die Mantelfläche <math>M</math> in Abhängigkeit der Höhe h zu <math>M=\frac{2\pi R^2h}{R+h}</math> ergibt}}
 
  
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
<center>[[Datei:Erde_tangenten-dreiecke.jpg|400px]]</center>
+
1. <center>[[Datei:Erde_tangenten-dreiecke.jpg]]</center>
  
 
In diesem Bild betrachet man die zwei rechtwinkligen Dreiecke <math>\Delta AMS</math> und <math> \Delta AMD</math>, welche zueinander ähnlich sind. In ähnlichen Dreiecken sind die Streckenverhältnisse entsprechender Seiten gleich:
 
In diesem Bild betrachet man die zwei rechtwinkligen Dreiecke <math>\Delta AMS</math> und <math> \Delta AMD</math>, welche zueinander ähnlich sind. In ähnlichen Dreiecken sind die Streckenverhältnisse entsprechender Seiten gleich:
Im Dreieck <math>\Delta AMS</math> betrachtet man das Streckenverhältnis <math>\frac {\bar {SM}}{\bar {}{MA}} = \frac {R+h}{R}</math>. Das entsprechende Seitenverhältnis im Dreieck <math> \Delta AMD</math> ist <math>\frac {\bar {MA}}{\bar {}{MD}} = \frac {R}{R-l}</math>.
+
Im Dreieck <math>\Delta AMS</math> betrachtet man das Streckenverhältnis <math>\frac {\bar {SM}}{\bar {}{MA}} = \frac {R+x}{R}</math>. Das entsprechende Seitenverhältnis im Dreieck <math> \Delta AMD</math> ist <math>\frac {\bar {MA}}{\bar {}{MD}} = \frac {R}{R-h}</math>.
  
Also ist <math>\frac {R+h}{R} = \frac {R}{R-l}</math>.
+
Also ist   <math>\frac {R+x}{R} = \frac {R}{R-h}</math>.
  
Formt man um <math> R-l = \frac{R^2}{R+h}</math> und löst nach l auf und fasst die rechte Seite zusammen, dann ergibt sich <math> l = R - \frac{R^2}{R+h}=\frac{R^2+Rh-R^2}{R+h}=\frac{Rh}{R+h}</math>.
+
Formt man um <math> R-h = \frac{R^2}{R+x}</math> und löst nach h auf und fasst die rechte Seite zusammen, dann ergibt sich <math> h = R - \frac{R^2}{R+x}=\frac{R^2+Rx-R^2}{R+x}=\frac{Rh}{R+x}</math>.
  
Setzt man den Term für l in die Formel für die Mantelfläche ein, so ergibt sich <math> M = \frac {2 \pi R^2 h}{R+h}
+
Setzt man den Term für h in die Formel für die Mantelfläche ein, so ergibt sich <math> M = \frac {2 \pi R^2 x}{R+x}</math>.
 +
 
 +
2. a) <math> D = [0;\infty[</math>
 +
 
 +
b) <math> x \not= -R</math>
 +
 
 +
c) <math> M = 2 \pi R^2</math>
 
}}
 
}}
 +
 +
 +
 +
Im Funktionsterm <math> \frac {2 \pi R^2 x}{R+x}</math> für <math>M</math> kommt die Variable x im Nenner des Bruches vor. Im Nenner steht ein linearer Term in x. <br>
 +
Da der Nenner eines Bruches nie Null sein darf, muss man die Definitionsmenge beachten. <br>
 +
Du hast so etwas schon bei der indirekten Proportionalität kennengelernt. Bei der Funktion <math> f: x \rightarrow \frac {1}{x}</math> darf auch <math>0</math> nicht eingesetzt werden.<br>
 +
Man definiert allgemein solche Funktionen, bei denen x in einem Polynom im Nenner auftritt, als gebrochen-rationale Funktionen.
 +
 +
{{Merke|Sind <math>g(x) = a_zx^z+a_{z-1}x^{z-1}+ ... + a_1 x+a_0</math> mit <math>a_z\not=0</math> und <math>h(x) = b_nx^n+b_{n-1}x^{n-1}+ ... + b_1 x+b_0</math> mit <math>b_n\not=0</math> Polynome vom Grad <math>z</math> und <math>n</math> mit <math>z,n \in N</math>,
 +
 +
so heißt die Funktion <math> f: \rightarrow f(x)</math> mit <math>f(x)= \frac{g(x)}{h(x)}</math>  '''gebrochen-rationale Funktion'''.
 +
 +
Es ist <math>f(x) = \frac{a_zx^z+a_{z-1}x^{z-1}+ ... + a_1 x+a_0}{b_nx^n+b_{n-1}x^{n-1}+ ... + b_1 x+b_0}</math> mit <math>a_z, b_n\not=0</math>
 +
 +
Die Definitionsmenge von <math>f</math> ist die Menge der reellen Zahlen ausgenommen die Nullstellen des Nennerpolynoms.
 +
 +
<math>z</math> ist der Grad des Zählerpolynoms, <math>n</math> der Grad des Nennerpolynoms.
 +
 +
Ist <math>z < n</math>, dann ist <math>f</math> eine '''echt''' gebrochen-rationale Funktion, ist <math>z \ge n</math>, dann ist <math>f</math> eine '''unecht''' gebrochen-rationale Funktion.}}
 +
 +
'''Beispiel:'''
 +
 +
Die Funktion <math>f:x\rightarrow \frac{x-2}{x^2-1}</math> hat  wegen <math>x^2-1= (x+1)(x-1)</math> als Definitionsmenge <math>R</math>\ {-1;1}.<br>
 +
<math>f</math> ist eine echt gebrochen-rationale Funktion, da <math>z=1</math> und <math>n = 2</math>, also <math>z < n</math> ist.
 +
 +
'''Bemerkung:'''
 +
 +
Unecht gebrochenrationale Funktion können mittels Polynomdivision in eine ganz-rationale Funktion und eine echt gebrochen-rationale Funktion aufgeteilt werden.
 +
 +
'''Beispiel für unecht gebrochen-rationale Funktionen:'''
 +
 +
1. Für die Funktion <math>f:x\rightarrow \frac{x^2+2}{x^2-1}</math> ist der Funktionsterm umformbar. Es ist <math>
 +
\frac{x^2+2}{x^2-1}=1+ \frac {3}{x^2-1}</math>
 +
 +
2. Für die Funktion <math>f:x\rightarrow \frac{x^3+2}{x^2-1}</math> ist der Funktionsterm umformbar. Es ist <math>
 +
\frac{x^3+2}{x^2-1}=x+ \frac {x+2}{x^2-1}</math>

Aktuelle Version vom 25. März 2013, 14:33 Uhr

Astronauten, die von einer Raumstation,welche in der Höhe x um die Erde kreist, auf die Erde blicken, sehen eine Kugelhaube.

Erde tangenten.jpg


Stift.gif   Aufgabe

Die Mantelfläche M der Kugelhaube ist M = 2\pi R h wobei R der Erdradius R = 6370 km und h die Länge der Strecke [CD] ist.

1. Zeige, dass die Mantelfläche M in Abhängigkeit der Höhe x sich zu M=\frac{2\pi R^2h}{R+x} ergibt.

Die Höhe x ist die Variable für die Mantelfläche M.

2. a) Bestimme die Definitionsmenge.

b) Welchen Wert dürftest du nicht für x einsetzen?

c) Welcher Grenzwert ergibt sich für die Mantelfläche  M für  x \rightarrow \infty?



1.
Erde tangenten-dreiecke.jpg

In diesem Bild betrachet man die zwei rechtwinkligen Dreiecke \Delta AMS und  \Delta AMD, welche zueinander ähnlich sind. In ähnlichen Dreiecken sind die Streckenverhältnisse entsprechender Seiten gleich: Im Dreieck \Delta AMS betrachtet man das Streckenverhältnis \frac {\bar {SM}}{\bar {}{MA}} = \frac {R+x}{R}. Das entsprechende Seitenverhältnis im Dreieck  \Delta AMD ist \frac {\bar {MA}}{\bar {}{MD}} = \frac {R}{R-h}.

Also ist \frac {R+x}{R} = \frac {R}{R-h}.

Formt man um  R-h = \frac{R^2}{R+x} und löst nach h auf und fasst die rechte Seite zusammen, dann ergibt sich  h = R - \frac{R^2}{R+x}=\frac{R^2+Rx-R^2}{R+x}=\frac{Rh}{R+x}.

Setzt man den Term für h in die Formel für die Mantelfläche ein, so ergibt sich  M = \frac {2 \pi R^2 x}{R+x}.

2. a)  D = [0;\infty[

b)  x \not= -R

c)  M = 2 \pi R^2


Im Funktionsterm  \frac {2 \pi R^2 x}{R+x} für M kommt die Variable x im Nenner des Bruches vor. Im Nenner steht ein linearer Term in x.
Da der Nenner eines Bruches nie Null sein darf, muss man die Definitionsmenge beachten.
Du hast so etwas schon bei der indirekten Proportionalität kennengelernt. Bei der Funktion  f: x \rightarrow \frac {1}{x} darf auch 0 nicht eingesetzt werden.
Man definiert allgemein solche Funktionen, bei denen x in einem Polynom im Nenner auftritt, als gebrochen-rationale Funktionen.

Nuvola apps kig.png   Merke

Sind g(x) = a_zx^z+a_{z-1}x^{z-1}+ ... + a_1 x+a_0 mit a_z\not=0 und h(x) = b_nx^n+b_{n-1}x^{n-1}+ ... + b_1 x+b_0 mit b_n\not=0 Polynome vom Grad z und n mit z,n \in N,

so heißt die Funktion  f: \rightarrow f(x) mit f(x)= \frac{g(x)}{h(x)} gebrochen-rationale Funktion.

Es ist f(x) = \frac{a_zx^z+a_{z-1}x^{z-1}+ ... + a_1 x+a_0}{b_nx^n+b_{n-1}x^{n-1}+ ... + b_1 x+b_0} mit a_z, b_n\not=0

Die Definitionsmenge von f ist die Menge der reellen Zahlen ausgenommen die Nullstellen des Nennerpolynoms.

z ist der Grad des Zählerpolynoms, n der Grad des Nennerpolynoms.

Ist z < n, dann ist f eine echt gebrochen-rationale Funktion, ist z \ge n, dann ist f eine unecht gebrochen-rationale Funktion.

Beispiel:

Die Funktion f:x\rightarrow \frac{x-2}{x^2-1} hat wegen x^2-1= (x+1)(x-1) als Definitionsmenge R\ {-1;1}.
f ist eine echt gebrochen-rationale Funktion, da z=1 und n = 2, also z < n ist.

Bemerkung:

Unecht gebrochenrationale Funktion können mittels Polynomdivision in eine ganz-rationale Funktion und eine echt gebrochen-rationale Funktion aufgeteilt werden.

Beispiel für unecht gebrochen-rationale Funktionen:

1. Für die Funktion f:x\rightarrow \frac{x^2+2}{x^2-1} ist der Funktionsterm umformbar. Es ist 
\frac{x^2+2}{x^2-1}=1+ \frac {3}{x^2-1}

2. Für die Funktion f:x\rightarrow \frac{x^3+2}{x^2-1} ist der Funktionsterm umformbar. Es ist 
\frac{x^3+2}{x^2-1}=x+ \frac {x+2}{x^2-1}