Rationale Funktionen Polstellen: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 22: Zeile 22:
  
 
Ist n ungerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R\backslash  \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol mit Vorzeichenwechsel'''.
 
Ist n ungerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R\backslash  \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol mit Vorzeichenwechsel'''.
 +
}}
 +
 +
 +
{{Aufgabe|
 +
Ermittle bei den gegebenen Funktionen jeweils die Polstelle(n) der Funktion und beschreibe das Vorzeichenverhalten der Funktion bei Annäherung an die Polstelle(n).
 +
 +
a) <math>f</math> mit <math> f(x) = \frac{1}{x-2}</math>
 +
 +
b) <math>g</math> mit <math> g(x) = \frac{1}{2-x}</math>
 +
 +
c) <math>h</math> mit <math> h(x) = \frac{1}{(x-2)^2}</math>
 +
 +
d) <math>k</math> mit <math> k(x) = \frac{1}{(x-3)^7}</math>
 +
 +
e) <math>l</math> mit <math> l(x) = \frac{1}{(x-3)(x+2)}</math>
 +
}}
 +
 +
 +
{{Lösung versteckt|1=
 +
 +
a) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): <math>f(x) \rightarrow -\infty</math>; Annäherung von rechts (x>2): <math> f(x) \rightarrow \infty</math>
 +
 +
b) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): <math>g(x) \rightarrow \infty</math>; Annäherung von rechts (x>2): <math> g(x) \rightarrow -\infty</math>
 +
 +
c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): <math>h(x) \rightarrow \infty</math>; Annäherung von rechts (x>2): <math> h(x) \rightarrow \infty</math>
 +
 +
d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>k(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> k(x) \rightarrow -\infty</math>
 +
 +
e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): <math>l(x) \rightarrow \infty</math>; Annäherung von rechts (x>-2): <math> f(x) \rightarrow -\infty</math><br>
 +
x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): <math>l(x) \rightarrow -\infty</math>; Annäherung von rechts (x>3): <math> f(x) \rightarrow \infty</math>
 +
 +
 +
 
}}
 
}}

Version vom 4. April 2013, 11:21 Uhr

Die Funktion f: x \rightarrow \frac{1}{x} ist für  x = 0 nicht definiert. Wie verhält sie sich in der Umgebung von 0? Je kleiner x betragsmäßig wird, desto größer wird der Betrag von \frac{1}{x}. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.

Nuvola apps kig.png   Merke

Ist an einer Definitionslücke x_0 einer gebrochen-rationalen Funktion f

\lim_{x \to x_0}\left| f(x) \right|=\infty,

dann ist die Definitionslücke  x_0 eine Polstelle von f.

Beispiele:

1. Die Funktion f: x \rightarrow \frac{1}{x} hat für  x = 0 einen Pol 1. Ordnung (0 ist einfache Nullstelle des Nenners).

Indirekte proportionalität.jpg

Nähert man sich von links an, also  x \rightarrow 0 mit x<0, dann streben die Funktionswerte nach -\infty; nähert man sich von rechts an, also  x \rightarrow 0 mit x>0, dann streben die Funktionswerte nach \infty. f hat an  x = 0 eine Polstelle mit Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

2. Die Funktion g: x \rightarrow \frac{1}{x^2} hat für  x = 0 einen Pol 2. Ordnung (0 ist zweifache Nullstelle des Nenners).

1 durch x^2.jpg

Nähert man sich von links oder von rechts an, also  x \rightarrow 0 mit x<0 oder x>0, dann streben die Funktionswerte in beiden Fällen nach \infty. g hat an  x = 0 eine Polstelle ohne Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

Nuvola apps kig.png   Merke

Man kann allgemein für eine gebrochen-rationale Funktion  f mit  f(x)=\frac{1}{(x-x_0)^n} formulieren:

Ist n gerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R \backslash   \{x_0\} an der Stelle x = x_0 einen Pol ohne Vorzeichenwechsel.

Ist n ungerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R\backslash   \{x_0\} an der Stelle x = x_0 einen Pol mit Vorzeichenwechsel.


Stift.gif   Aufgabe

Ermittle bei den gegebenen Funktionen jeweils die Polstelle(n) der Funktion und beschreibe das Vorzeichenverhalten der Funktion bei Annäherung an die Polstelle(n).

a) f mit  f(x) = \frac{1}{x-2}

b) g mit  g(x) = \frac{1}{2-x}

c) h mit  h(x) = \frac{1}{(x-2)^2}

d) k mit  k(x) = \frac{1}{(x-3)^7}

e) l mit  l(x) = \frac{1}{(x-3)(x+2)}


a) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): f(x) \rightarrow -\infty; Annäherung von rechts (x>2):  f(x) \rightarrow \infty

b) x = 2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<2): g(x) \rightarrow \infty; Annäherung von rechts (x>2):  g(x) \rightarrow -\infty

c) x = 2; Pol 2. Ordnung; Pol ohne Vorzeichenwechsel; Annäherung von links (x<2): h(x) \rightarrow \infty; Annäherung von rechts (x>2):  h(x) \rightarrow \infty

d) x = 3; Pol 7. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): k(x) \rightarrow -\infty; Annäherung von rechts (x>3):  k(x) \rightarrow -\infty

e) x = -2; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<-2): l(x) \rightarrow \infty; Annäherung von rechts (x>-2):  f(x) \rightarrow -\infty

x = 3; Pol 1. Ordnung; Pol mit Vorzeichenwechsel; Annäherung von links (x<3): l(x) \rightarrow -\infty; Annäherung von rechts (x>3):  f(x) \rightarrow \infty