Rationale Funktionen Polstellen: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> ist für <math> x = 0 </math> nicht definiert. Wie verhält sie sich in der Umgebung von <math>0</math>? Je kleiner <math>x</math> betragsmäßig wird, desto größer wird der Betrag von <math>\frac{1}{x}</math>. Der Graph von <math>f</math> sieht so aus:
+
Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> ist für <math> x = 0 </math> nicht definiert. Wie verhält sie sich in der Umgebung von <math>0</math>? Je kleiner <math>x</math> betragsmäßig wird, desto größer wird der Betrag von <math>\frac{1}{x}</math>. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.
<center>[[Bild:Indirekte_proportionalität.jpg]]</center>
+
 
+
Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.
+
  
 
{{Merke|Ist an einer Definitionslücke <math>x_0</math> einer gebrochen-rationalen Funktion <math>f</math>
 
{{Merke|Ist an einer Definitionslücke <math>x_0</math> einer gebrochen-rationalen Funktion <math>f</math>
Zeile 9: Zeile 6:
  
 
dann ist die Definitionslücke <math> x_0</math> eine '''Polstelle''' von f.}}
 
dann ist die Definitionslücke <math> x_0</math> eine '''Polstelle''' von f.}}
 +
 +
'''Beispiele:'''
 +
 +
1. Die Funktion <math>f: x \rightarrow \frac{1}{x}</math> hat für <math> x = 0 </math> einen Pol 1. Ordnung (<math>0</math> ist einfache Nullstelle des Nenners).
 +
<center>[[Bild:Indirekte_proportionalität.jpg]]</center>
 +
Nähert man sich von links an, also <math> x \rightarrow 0</math> mit <math>x<0</math>, dann streben die Funktionswerte nach <math>-\infty</math>; nähert man sich von rechts an, also <math> x \rightarrow 0</math> mit <math>x>0</math>, dann streben die Funktionswerte nach <math>\infty</math>. <math>f</math> hat an <math> x = 0</math> eine '''Polstelle mit Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>.
 +
 +
2. Die Funktion <math>g: x \rightarrow \frac{1}{x^2}</math> hat für <math> x = 0 </math> einen Pol 2. Ordnung (<math>0</math> ist zweifache Nullstelle des Nenners).
 +
<center>[[Bild:1_durch_x^2.jpg]]</center>
 +
Nähert man sich von links oder von rechts an, also <math> x \rightarrow 0</math> mit <math>x<0</math> oder <math>x>0</math>, dann streben die Funktionswerte in beiden Fällen nach <math>\infty</math>. <math>g</math> hat an <math> x = 0</math> eine '''Polstelle ohne Vorzeichenwechsel'''. Die Gerade <math>x = 0</math> ist senkrechte Asymptote des Graphen von <math>f</math>.
 +
 +
{{Merke|Man kann allgemein für eine gebrochen-rationale Funktion <math> f</math> mit <math> f(x)=\frac{1}{(x-x_0)^n}</math> formulieren:
 +
 +
Ist n gerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R \backslash  \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol ohne Vorzeichenwechsel'''.
 +
 +
Ist n ungerade, dann hat die Funktion <math>f:x\rightarrow \frac{1}{(x-x_0)^n}</math> mit <math>D = R\backslash  \{x_0\}</math> an der Stelle <math>x = x_0</math> einen '''Pol mit Vorzeichenwechsel'''.
 +
}}

Version vom 27. Februar 2013, 16:57 Uhr

Die Funktion f: x \rightarrow \frac{1}{x} ist für  x = 0 nicht definiert. Wie verhält sie sich in der Umgebung von 0? Je kleiner x betragsmäßig wird, desto größer wird der Betrag von \frac{1}{x}. Zeigt eine Funktion für einen x-Wert ein solches Verhalten, dann ist der x-Wert eine Definitionslücke und man bezeichnet diese Stelle als Polstelle.

Nuvola apps kig.png   Merke

Ist an einer Definitionslücke x_0 einer gebrochen-rationalen Funktion f

\lim_{x \to x_0}\left| f(x) \right|=\infty,

dann ist die Definitionslücke  x_0 eine Polstelle von f.

Beispiele:

1. Die Funktion f: x \rightarrow \frac{1}{x} hat für  x = 0 einen Pol 1. Ordnung (0 ist einfache Nullstelle des Nenners).

Indirekte proportionalität.jpg

Nähert man sich von links an, also  x \rightarrow 0 mit x<0, dann streben die Funktionswerte nach -\infty; nähert man sich von rechts an, also  x \rightarrow 0 mit x>0, dann streben die Funktionswerte nach \infty. f hat an  x = 0 eine Polstelle mit Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

2. Die Funktion g: x \rightarrow \frac{1}{x^2} hat für  x = 0 einen Pol 2. Ordnung (0 ist zweifache Nullstelle des Nenners).

1 durch x^2.jpg

Nähert man sich von links oder von rechts an, also  x \rightarrow 0 mit x<0 oder x>0, dann streben die Funktionswerte in beiden Fällen nach \infty. g hat an  x = 0 eine Polstelle ohne Vorzeichenwechsel. Die Gerade x = 0 ist senkrechte Asymptote des Graphen von f.

Nuvola apps kig.png   Merke

Man kann allgemein für eine gebrochen-rationale Funktion  f mit  f(x)=\frac{1}{(x-x_0)^n} formulieren:

Ist n gerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R \backslash   \{x_0\} an der Stelle x = x_0 einen Pol ohne Vorzeichenwechsel.

Ist n ungerade, dann hat die Funktion f:x\rightarrow \frac{1}{(x-x_0)^n} mit D = R\backslash   \{x_0\} an der Stelle x = x_0 einen Pol mit Vorzeichenwechsel.