Wurzelfunktion Übungen 2

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion


Bei den Übungen zur Wurzelfunktion lernst du weitere sich aus ihr ergebene Funktionen kennen.

  Aufgabe 18  Stift.gif

Zeichne den Graphen der Funktionen f:x \rightarrow x^3 im Intervall \left[ 0, 2 \right] und Fehler beim Parsen(Lexikalischer Fehler): g:x \rightarrow \sqrt[3]{x}\

im Intervall \left[ 0, 8\right] 


Beschreibe mit Worten die besondere Lage dieser beiden Graphen zueinander.


  Aufgabe 19  Stift.gif

Bestimme die natürliche Zahl n so, dass der Graph der Funktion der Funktion  f: x \rightarrow \sqrt[n]{x} durch den Punkt
a) P(225; 5)
b) Q(243; 3)
c) R(0,5; 0,125) geht und gib die zugehörigen Funktionsgleichungen an.

Bearbeite von dieser Webseite die ersten 3 Aufgaben.


  Aufgabe 20  Stift.gif

Medizinstudenten und Medizinstudentinnen lernen in der Anfangsvorlesung, dass das Flüssigkeitsvolumen V, das bei konstantem Druck pro Zeiteinheit durch eine Röhre mit Radius r fließt, proportional zur 4. Potenz des Radius ist. (Gesetz von Hagen-Poiseuille). Für die Medizinstudenten und Medizinstudentinnen sind diese Röhren Adern im menschlichen Körper und die Flüssigkeit ist Blut.

Dieses Video hat keinen Ton!

1. Stelle diesen Sachverhalt als Formel dar!

2. Löse diese Gleichung nach r auf und gib jene Funktionsgleichung an, die dem Radius r das entsprechende Volumen V zuordnet!
Skizziere den typischen Verlauf des Funktionsgraphen!

3. Wie ändert sich das Blutvolumen, das durch eine Ader fließt, wenn sich der Gefäßradius um
a) 10%, 50%, 100% vergrößert? (Mehrdurchblutung bei Gefäßerweiterung)
b) 10%, 50%, 100% verringert? (Minderdurchblutung durch Gefäßverengung)

4. Um wieviel darf der Radius r zunehmen, damit
a) 10%
b) 50% mehr Blut durch die Ader fließt?

5. Um wieviel darf der Radius r abnehmen, damit noch
a) 90%
b) 50% Blut durch die Ader fließt?


  Aufgabe 21  Stift.gif

Die zwei österreichischen Physiker Josef Stefan und Ludwig Boltzmann fanden das nach ihnen benannte Strahlungsgesetz. Es besagt, dass die Strahlungsleistung P einer Lichtquelle proportional zur 4. Potenz der Temperatur T dieser Lichtquelle (T gemessen in der absoluten Kelvin-Temperatur) ist.

Dieser Sachverhalt wird durch die Formel
P = \sigma A T^4
beschrieben.

In dieser Formel ist \sigma die Stefan-Boltzmann-Konstante \sigma = 5,67*10^{-8} mit der Einheit  \frac{W}{m^2K^4}.
A ist die Oberfläche der Lichtquelle.

a) Löse die Gleichung nach T auf und gib jene Funktionsgleichung an, die der Strahlenleistung P die Temperatur T der Lichtquelle zuordnet!
Skizziere den typischen Verlauf des Funktionsgraphen!

b) Die Strahlungsleistung der Sonne beträgt P = 3,84*10^{26}W.
Die Sonne kann annähernd als Kugel mit der Kugeloberfläche ist  A = 4 R_S^2\pi modelliert werden.
Der Sonnenradius R_S ist circa das 109-fache des Erdradius (6370km).

Wie groß ist die Oberflächentemperatur in K (und in °C) auf der Sonne?
Zur Umrechnung der Kelvin-Temperatur in °C kannst du die Formel T_C = T_K - 273,15 verwenden.


Aufgabe 18

Wf3-kf.jpg

Die Graphen von f und g sind symmetrisch zur Gerade y = x ( 1. Mediane).

Aufgabe 19

a) n = 4 und f(x) = x^4
b) n = 5 und f(x) = x^5

c) n = 3 und f(x) = x^3

Aufgabe 20

1. V = r^4 c wobei c eine Konstante ist.
2. Fehler beim Parsen(Lexikalischer Fehler): r = \sqrt[4]{\frac{V}{c}}\
3. a) Vermehrung um 46%; 506%, 1600%
b) Verminderung um 35%, 93,75%, 100%
4. a) 2,4%
b) 11%
5. a) 2,6%
b) 16%

Aufgabe 21

a)  T = \sqrt[4]{\frac{P}{A\sigma}}

b) 5782 K bzw. 5509^oC



Zurück zu allgemeinen Wurzelfunktion