Wurzelfunktion Anwendungen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche

Startseite --- Die Wurzelfunktion - Übungen - Anwendungen --- Die allgemeine Wurzelfunktion - Übungen - Anwendungen --- Die Wurzelfunktion als Umkehrfunktion


Viele Anwendungen der Wurzelfunktion haben einen Faktor a. Daher betrachten wir zuerst die Funktion  f: x \rightarrow a \sqrt x .

  Aufgabe 1  Stift.gif

Im Applet ist der Graph der Wurzelfunktion  f:x \rightarrow a \sqrt x mit x \in R^+_0 dargestellt.
Variiere mit dem Schieberegler den Wert von a.

Wie ändert sich der Graph der Wurzelfunktion x \rightarrow \sqrt x für

  1. a = -1
  2. 0 < a < 1
  3. 1 < a
  4. a < 0


  1. Für a = -1 wird der Graph der Wurzelfunktion x \rightarrow \sqrt x an der x-Achse gespiegelt.
  2. Für 0 < a < 1 wird der Graph der Wurzelfunktion x \rightarrow \sqrt x in y-Richtung gestaucht.
  3. Für 1 < a wir der Graph der Wurzelfunktion x \rightarrow \sqrt x in y-Richtung gestreckt.
  4. Für negative a wird der Graph von 2. oder 3. an der y-Achse gespiegelt.


  Aufgabe 2  Stift.gif

Gib die Funktion, die jeder Oberfläche eines Würfels die Kantenlänge zuordnet als Funktionsterm an.

  1. Bestimme zuerst einen Term für Oberfläche O eines Würfels in Abhängigkeit der Kantenlänge a.
  2. Löse den Term nach a auf.
  3. Bestimme a für O = 24; 54; 96; 150; 216; ...
  4. Bestimme a für O = 108


  1.  O = 6 a^2
  2.  a = \sqrt{\frac{O}{6}}
  3.  a = 2;\; 3;\; 4;\; 5;\; 6;\; ...
  4.  a = 3 \sqrt 2
  Aufgabe 3  Stift.gif

Schau dir diesen Video an.

Wie weit kannst du bis zum Horizont sehen? Etwa (!50m) (!500m) (5km) (!50km)

MIt welcher Formel kannst du die Sichtweite a berechnen? (a = \sqrt{c^2-b^2} ) (!a = \sqrt{b^2-c^2}) (!a = \sqrt{a^2-b^2}) (!a = \sqrt{c^2-a^2})

Die Erde kann näherungsweise als Kugel angesehen werden. Die Sichtweite auf der Erde kann man bei guten Bedingungen durch die Formel  s = 3,57 \sqrt h (vgl. Sichtweite) beschreiben. Dabei ist h die Augenhöhe in m und s die Sichtweite in km. Man geht am besten von der Sichtweite auf dem Meer aus, da dort keine Berge stören. Ansonsten nimmt man die "ideale" Kugelgestalt der Erde ohne Berge und Täler.

  1. Zeichne den Graphen zur Funktion  s: h \rightarrow 3,57 \sqrt h.
  2. Wie weit kann man bei einer Augenhöhe von 1,7m bei klarem Wetter sehen. Löse graphisch und rechnerisch.
  3. Wie weit kann man von der obersten Plattform des Eiffelturms (276m), vom Mount Everest (8848m), von der ISS (380km) sehen?
  4. Wie hoch muss ein Berg sein, damit man 100km weit sehen kann?



  1. Wurzelfunktion 3-57.jpg
  2. 4,65km
    Wurzelfunktion 3-57 2.jpg
  3. 59,3km, 335,8km, 2200km
  4. 786m
  Aufgabe 4  Stift.gif
Parabelbrems.gif

Bei den quadratischen Funktionen hast du kennengelernt, dass der Bremsweg s in m eines Autos, welches mit der Geschwindigkeit v in  \frac{km}{h} fährt, mit der Faustregel  s = (\frac {v}{10})^2 berechnet werden kann.

  1. Löse die Gleichung  s = (\frac {v}{10})^2 nach v auf.
  2. Gib die Funktion f mit Defintionsmenge an, die den Zusammenhang Bremsweg --> Geschwindigkeit beschreibt.
  3. Mit welcher Geschwindigkeit v in  \frac{km}{h} ist wohl ein Auto, das eine Bremsspur von

a) 20m,
b) 40m,
c) 60m,
d) 80m,
e) 100m
gemacht hat, gefahren?
Löse graphisch und rechnerisch!


  1.  v = 10 \sqrt s
  2.  f: s \rightarrow 10 \sqrt s; D = R^+_0
  3. Für die graphische Lösung kannst du in diesem Applet die entsprechenden Werte mit dem Schieberegler einstellen.

a) 44,7  \frac{km}{h}
b) 63,2  \frac{km}{h}
c) 77,5  \frac{km}{h}
d) 89,4  \frac{km}{h}
e) 100  \frac{km}{h}



Zurück zu Wurzelfunktion oder weiter mit Übungen.