Trigonometrische Funktionen 2: Unterschied zwischen den Versionen
(→Über diesen Lernpfad) |
K (→Physik-Ecke) |
||
Zeile 107: | Zeile 107: | ||
|rowspan=2 | | |rowspan=2 | | ||
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | ||
− | *'''[[Trigonometrische Funktionen/Anwendungen in der Physik|<font color="#990000">Lerne hier einige Anwendungen | + | *'''[[Trigonometrische Funktionen/Anwendungen in der Physik|<font color="#990000">Lerne hier einige Anwendungen kennen!</font>]]'''</div> |
|} | |} | ||
Version vom 18. Januar 2011, 14:33 Uhr
Silvia Joachim, Karl Haberl und Franz Embacher
Quick-Links:
- Für LehrerInnen: Didaktischer Kommentar
- Wiederholung: Erfahre hier die Eigenschaften der trigonometrischen Funktionen und ihrer Graphen!
- Wiederholung: Erforsche hier den Einfluss der Parameter auf das Aussehen des Graphen bei quadratischen Funktionen!
- FAQ: Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.
- Station 1: Erforsche hier den Einfluss der Parameter auf das Aussehen des Graphen!
- Station 2: Erfahre hier, wie du aus dem Graphen einer Funktion deren Term ablesen kannst - und mehr!
- Anwendungen: Lerne hier einige Anwendungen kennen!
Über diesen Lernpfad
Hier sollen sich die SchülerInnen mit der Variation von Parametern in Sinus- und Kosinusfunktionen beschäftigen und ihre Auswirkung erarbeiten und beschreiben können.
Kompetenzen
Das kannst du lernen
- Erkennen der Auswirkung der Variation von Parametern im Funktionsterm auf die Graphen der Sinus- und Kosinusfunktion und umgekehrt.
Das kannst du schon
- Darstellungsformen von Funktionen
- Kenntnis der Auswirkung von Variationen in den Darstellungsformen von linearen und quadratischen Funktionen
- Eigenschaften der trigonometrischen Funktionen
Wenn du die Eigenschaften der trigonometrischen Funktionen und ihrer Graphen wiederholen möchtest, rufe diese Seite auf!
Hallo! Wäre es nicht toll, wenn du hellsehen könntest? Wenn du den Graphen eines Funktionsterms auch ohne Wertetabelle direkt zeichnen könntest? Wenn du aus dem Graphen einer Funktion deren Term ablesen könntest? Für die linearen und die quadratischen Funktionen beherrschst du diese Kunst wahrscheinlich schon. Dann wirst du vieles von deinem Wissen auf die allgemeine Sinus- und Kosinusfunktion übertragen können. |
Hinweise:
|
Dieser Lernpfad enthält zwei Stationen, die du am besten nacheinander bearbeitest. Klicke dazu einfach auf die gewünschte Station! Wenn du vorher die Eigenschaften der trigonometrischen Funktionen und ihrer Graphen wiederholen möchtest, rufe diese Seite auf.
<graphviz> digraph G { rankdir=RL; "Term" -> "Graph"[label=" "]; edge [color = white]; "Term" -> "Hellsehen"; "Hellsehen" -> "Graph"; edge [color = black]; rankdir=LR; "Graph" -> "Term"; } </graphviz> Physik-Ecke |
|
Experimentier-Ecke
|
Nun hast du es wirklich geschafft und den ganzen Lernpfad bearbeitet. Du kannst stolz sein - gut gemacht! Hefteintrag: Lies dir bitte deinen Hefteintrag durch und überprüfe kurz, ob du wirklich alles Wichtige notiert hast! Ich wünsche dir noch einen schönen Tag! |
Dieser Lernpfad wurde erstellt von:
|