Pool 2: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Text korrigieren)
(Text korrigieren)
Zeile 7: Zeile 7:
 
[[Sek2Uni|Startseite des Lernpfads]] | [[Sek2Uni/Pool_1|Aufgabenpool 1]] | [[Sek2Uni/Didaktischer_Kommentar|Didaktischer Kommentar]]
 
[[Sek2Uni|Startseite des Lernpfads]] | [[Sek2Uni/Pool_1|Aufgabenpool 1]] | [[Sek2Uni/Didaktischer_Kommentar|Didaktischer Kommentar]]
  
== <font color="#990000">Text korrigieren</font> ==
+
== <font color="#990000">Text korrigieren: Radioaktiver Zerfall</font> ==
  
 
<font color="#004400">[Aufgabe für 2er- oder 3er-Gruppe]</font> [Franz]
 
<font color="#004400">[Aufgabe für 2er- oder 3er-Gruppe]</font> [Franz]
  
Korrigiert folgenden Text:
+
Stellt euch vor, ihr findet bei einer Internetrecherche zum Thema "mathematische Beschreibung des radioaktiven Zerfalls" den folgenden Text:
: xxx
+
  
Euer Ergebis sollte ein Text sein, der keine gravierenden Fehler mehr enthält!
+
:Die Funktion <math>\,C\,e^{-\lambda x}</math> nähert sich für große <math>\,x</math> der <math>\,x</math>-Achse an. Auf der anderen Seite kommt sie von unendlich großen Werten herunter, bis sie bei <math>\,C</math> die <math>\,y</math>-Achse schneidet. Daher beschreibt sie eine exponentielle Abnahme, in welchem Fall man <math>\,x=t</math> setzen muss. Beim radioaktiven Zerfall ist <math>\,C</math> die Menge der am Anfang vorhandenen Radioaktivität. Wir nennen sie <math>\,n(t)</math>. <math>\,\lambda</math> heißt Zerfallskonstante. Jetzt kann gefragt werden, nach welcher Zeit nur mehr die Hälfte übrig ist? Diese Frage lösen wir mit Hilfe der Exponentialgleichung <center><math>\,C\,e^{-\lambda\,t}=50\%\,C\,e^{-\lambda\,t=0}</math>,</center> die sich nach geeigneter Behandlung auf <center><math>\,e^{-\lambda t}=\frac{1}{2}</math></center> reduziert. Jetzt wird logarithmiert (natürlich), also <center><math>\,-\lambda t=\ln(\frac{1}{2})=\frac{1}{\ln(2)}=-\ln(2)</math>,</center> woraus sich <center><math>\,t=\frac{\ln(2)}{\lambda}</math></center> ergibt. Das ist also die Halbwertszeit und gleichzeitig die Beziehung derselben mit der Zerfallskonstante.
 +
 
 +
Welche ungeschickten Formulierungen wurden verwendet, welche Fehler wurden gemacht? Formuliert den Text so um, dass er das, was er sagen will, auf richtigere und schönere Weise zum Ausdruck bringt!
  
 
== <font color="#990000">Text korrigieren</font> ==
 
== <font color="#990000">Text korrigieren</font> ==

Version vom 15. September 2008, 20:01 Uhr

Lernpfad zur Schnittstelle Sekundarstufe 2 - Universität


Aufgabenpool 2


Startseite des Lernpfads | Aufgabenpool 1 | Didaktischer Kommentar

Inhaltsverzeichnis

Text korrigieren: Radioaktiver Zerfall

[Aufgabe für 2er- oder 3er-Gruppe] [Franz]

Stellt euch vor, ihr findet bei einer Internetrecherche zum Thema "mathematische Beschreibung des radioaktiven Zerfalls" den folgenden Text:

Die Funktion \,C\,e^{-\lambda x} nähert sich für große \,x der \,x-Achse an. Auf der anderen Seite kommt sie von unendlich großen Werten herunter, bis sie bei \,C die \,y-Achse schneidet. Daher beschreibt sie eine exponentielle Abnahme, in welchem Fall man \,x=t setzen muss. Beim radioaktiven Zerfall ist \,C die Menge der am Anfang vorhandenen Radioaktivität. Wir nennen sie \,n(t). \,\lambda heißt Zerfallskonstante. Jetzt kann gefragt werden, nach welcher Zeit nur mehr die Hälfte übrig ist? Diese Frage lösen wir mit Hilfe der Exponentialgleichung
\,C\,e^{-\lambda\,t}=50\%\,C\,e^{-\lambda\,t=0},
die sich nach geeigneter Behandlung auf
\,e^{-\lambda t}=\frac{1}{2}
reduziert. Jetzt wird logarithmiert (natürlich), also
\,-\lambda t=\ln(\frac{1}{2})=\frac{1}{\ln(2)}=-\ln(2),
woraus sich
\,t=\frac{\ln(2)}{\lambda}
ergibt. Das ist also die Halbwertszeit und gleichzeitig die Beziehung derselben mit der Zerfallskonstante.

Welche ungeschickten Formulierungen wurden verwendet, welche Fehler wurden gemacht? Formuliert den Text so um, dass er das, was er sagen will, auf richtigere und schönere Weise zum Ausdruck bringt!

Text korrigieren

[Aufgabe für 2er- oder 3er-Gruppe] [Matthias]

xxx

Text korrigieren

[Aufgabe für 2er- oder 3er-Gruppe] [Jochen]

xxx

Verhalten von Funktionen

[Aufgabe für 2er- oder 3er-Gruppe] [Franz]

Gegeben sei eine Funktion f:x\mapsto f(x). Ist \,a eine Konstante, so können aus \,f weitere Funktionen gewonnen werden:

  • g:x\mapsto f(x+a)
  • h:x\mapsto f(a x)
  • u:x\mapsto f(x)+a
  • v:x\mapsto a f(x)

Diskutiert das Verhalten und die Graphen der Funktionen \,g, \,h, \,u und \,v im Verhältnis zu jenen von \,f! Gebt einige Beispiele an und erstellt aussagekräftige Grafiken!

Wie übertragen sich folgende Eigenschaften auf die Funktionen \,g, \,h, \,u und \,v?

  • \,f ist periodisch mit Periode \,p.
  • \,f ist überall positiv.
  • \,f ist monoton steigend.
  • \,f hat bei \,x_0 eine Nullstelle (d.h. \,f(x_0)=0).

Erstellt mit einem dynamischen Geometriesystem (z.B. GeoGebra) ein Arbeitsblatt, in dem anhand einer Funktion \,f eurer Wahl die Konstante \,a mittels eines Schiebereglers variiert werden kann!

Das Integral

[Aufgabe für 2er- oder 3er-Gruppe] [Matthias]

Stichworte: Was ist das Integral? Unterschied bestimmtes Integral/unbestimmtes Integral (Stammfunktion).

Kurvendiskussion

[Aufgabe für 2er- oder 3er-Gruppe] [Jochen]

Stichworte: Hochpunkt, Tiefpunkt, Wendepunkt,... Was sind sie, wie finden wir sie und warum finden wir sie auf diese Weise?

Bewegung (fächerübergreifend mit Physik)

[Aufgabe für 2er- oder 3er-Gruppe] [Franz]

Was haben Zeit, Weg (Ort), Geschwindigkeit und Beschleunigung mit dem Differenzieren und Integrieren zu tun? Ihr könnt dabei davon ausgehen, dass eine Bewegungsform durch eine Zuordnung

t\mapsto s(t)

beschrieben wird. Dabei ist \,s(t) der Ort des betrachteten Objekts zur Zeit \,t.

Gebt einige Beispiele für Bewegungsformen an und erstellt aussagekräftige Grafiken oder Animationen (etwa mit einem Computeralgebra-System).

Beantwortet folgende Fragen:

  • Kann die Geschwindigkeit als Funktion der Zeit erhalten werden, wenn der Ort als Funktion der Zeit bekannt ist? Wenn ja, wie?
  • Kann die Beschleunigung als Funktion der Zeit erhalten werden, wenn der Ort als Funktion der Zeit bekannt ist? Wenn ja, wie?
  • Kann die Beschleunigung als Funktion der Zeit erhalten werden, wenn die Geschwindigkeit als Funktion der Zeit bekannt ist? Wenn ja, wie?
  • Kann der Ort als Funktion der Zeit erhalten werden, wenn die Geschwindigkeit als Funktion der Zeit bekannt ist? Wenn ja, wie?
  • Kann der Ort als Funktion der Zeit erhalten werden, wenn die Beschleunigung als Funktion der Zeit bekannt ist? Wenn ja, wie?
  • Wie kann der Ort als Funktion der Zeit erhalten werden, wenn bekannt ist, dass die Beschleunigung konstant (\,=g) ist, und dass zur Zeit \,t=0 sowohl der Ort als auch die Geschwindigkeit gleich 0 sind? (Kommt euch das Ergebnis bekannt vor?)

Kosten- und Preistheorie

[Aufgabe für 2er- oder 3er-Gruppe] [Peter]

Stichworte: Betriebsoptimale Menge, Carnotscher Punkt.

Funktionstypen

[Aufgabe für 2er- oder 3er-Gruppe] [Matthias]

Stichworte: Welche Typen von Funktionen gibt es, was sind ihre charakteristischen Eigenschaften? Die Beschreibung soll folgende Begriffe enthalten:

  • Asymptoten
  • Definitionsmenge
  • exponential-
  • logarithmisch
  • periodisch
  • Polstelle
  • Polynom
  • Symmetrie, symmetrisch
  • Winkelfunktion
  • Wurzel