|
|
(215 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
− | [[Benutzer:Kittel Matthias|<b>Matthias Kittel</b>]] und [[Benutzer:Walter Wegscheider|<b>Walter Wegscheider</b>]]
| + | <center><big><big><big><big>Willkommen zum Lernpfad</big> |
| | | |
− | {{Kasten1000| BREITE =100%|
| |
− | ÜBERSCHRIFT =Über diesen Lernpfad| INHALT1=Schüler/innen sollen sich mit der Beschreibung von dynamischen Vorgängen beschäftigen und den Unterschied zwischen diskreten Vorgängen (Beschreibung über Differenzengleichungen) und kontinuierlichen Vorgängen (Beschreibung über Differentialgleichungen) kennen lernen.|
| |
− | INHALT2=Kompetenzen| INHALT2a='''Das kannst du schon'''
| |
| | | |
− | *Darstellungsformen von Funktionen
| + | [[Bild:Logistisches_wachstum.png|150px]] [[Bild:Bsp rad zerfall.png |150px]] [[Bild:Wert quadratwurzel.png |150px]] |
− | *Kenntnis der Auswirkung von Variationen in verschiedenen Darstellungsformen (lineare, quadratische Funktionen, Potenzfunktionen, trigonometrische Funktionen u.a.)| INHALT2b='''Das kannst du lernen'''
| + | |
| | | |
− | *Wie beschreibt man diskrete dynamische Vorgänge mit Hilfe von Differenzengleichungen - Lösungsmöglichkeiten und Visualisierung an verschiedenen Beispielen
| |
− | *Wie beschreibt man kontinuierliche dynamische Vorgänge mit Hilfe von Differentialgleichungen - Visualisierung und Lösungsansätze mit Hilfe verschiedener Technologieunterstützungen an verschiedenen Beispielen| INHALT3=[[Diskret - kontinuierlich/Didaktischer Kommentar|Didaktischer Kommentar]]}}
| |
| | | |
− | == Rekursive Beschreibung von Veränderungen ==
| |
− | === Numerische Näherung - Heronverfahren ===
| |
− | === Radioaktiver Zerfall ===
| |
| | | |
− | Für Beispiele zum radioaktiven Zerfall siehe [[Diskret_-_kontinuierlich#Beispiele_zum_radioaktiven_Zerfall|hier]]
| + | <big>Diskret - kontinuierlich</big></big></big> |
| | | |
− | === Räuber-Beute-Modell ===
| |
| | | |
− | Zum Thema Räuber-Beute-Modell geht es [[Sek2Uni/Pool_1#R.C3.A4uber-Beute-Modell|hier]].
| + | erstellt von |
| | | |
− | == Differenzengleichung ==
| + | [[Benutzer:Kittel Matthias|<b>Matthias Kittel</b>]] und [[Benutzer:Walter Wegscheider|<b>Walter Wegscheider</b>]] |
− | === Begriffsbildung ===
| + | |
− | Eine Differenzengleichung ist eine Möglichkeit, dynamische Systeme abzubilden. Dabei wird eine Folge von diskreten (einzeln betrachtbaren, "abzählbaren") Ereignissen rekursiv definiert. Jedes Folgenglied ist daher eine Funktion der vorhergehenden Folgenglieder.
| + | |
| | | |
− | Form: <math>\,x_{n} = f(x_{n-1},x_{n-2},...,x_{1},x_{0})</math><br />
| + | im Rahmen eines internationalen Projektes von<br> |
− | für natürliche Zahlen n.
| + | [http://www.medienvielfalt.org Medienvielfalt im Mathematikunterricht]<br> |
| + | (Stand August 2011)</big> |
| | | |
− | Die Veränderung wird durch den '''Differenzenquotienten''' angegeben:
| |
− | <math>\frac{\Delta y}{\Delta n}</math><br />
| |
− | mit <math>\,n \in N</math>
| |
| | | |
− | Dabei entspricht:<br />
| |
− | <math>\Delta y_{n} \Longleftrightarrow y_{n+1}-y_{n}</math> und damit beispielsweise <math>\Delta y_{n}=5 \Longleftrightarrow y_{n+1}-y_{n}=5 \Longleftrightarrow y_{n+1}=y_{n}+5</math>
| |
| | | |
− | Links:
| + | </center> |
− | * [http://statmath.wu-wien.ac.at/~leydold/MOK/HTML/node187.html http://statmath.wu-wien.ac.at/~leydold/MOK/HTML/node187.html], Josef Leydold, Abt. f. angewandte Statistik und Datenverarbeitung, 1997
| + | |
| | | |
− | === Marktgleichgewicht - Cobweb-DIagramm ===
| |
− | Cobweb / Spinnwebdiagramme stellen eine gute Möglichkeit dar, Rekursionen darzustellen.
| |
| | | |
− | Links:
| + | Du erwirbst / stärkst in diesem Lernpfad folgende Kompetenzen {{versteckt| |
− | * Spinnwebdiagramme - Lineare Differenzengleichungen 1. Ordnung mit GeoGebra: [http://www.geogebra.org/de/wiki/index.php/Lineare_Differenzengleichung_1._Ordnung http://www.geogebra.org/de/wiki/index.php/Lineare_Differenzengleichung_1._Ordnung]
| + | '''Das kennst Du schon''' |
| | | |
− | == Von der diskreten zur kontinuierlichen Veränderung ==
| + | *Darstellungsformen von Funktionen |
− | === Exponentielles Wachstum - Lebensmittelkontrolle ===
| + | *Kenntnis der Auswirkung von Variationen in verschiedenen Darstellungsformen (lineare, quadratische Funktionen, Potenzfunktionen, trigonometrische Funktionen u.a.) |
| | | |
− | In Österreich ist es üblich, dass Lebensmittel verarbeitende und verkaufende Betriebe der Lebensmittelkontrolle obliegen (sie [http://www.bmgfj.gv.at/cms/site/thema.html?channel=CH0834 Bundesministerium für Gesundeheit]. Lebensmittel dürfen nämlich einen bestimmten Grenzwert an Bakterien nicht überschreiten, wenn sie verkauft werden sollen. Lebensmittelkontrollore überwachen die korrekt Verwahrung der Speisen und Getränke.
| + | '''Das lernst Du''' |
| | | |
− | Egal um welche Art von Keimen es sich handelt, die Vermehrungsrate ist gigantisch. Aus diesem Grund verwendet man häufig eine Exponenzialfunktion, um das Wachstum zu beschreiben. Mit Hilfe des Zusammenhangs <math>N(t)=a\cdot e^{b\cdot t}</math> lässt sich diese Wachstum beschreiben.
| + | *Wie beschreibt man diskrete dynamische Vorgänge mit Hilfe von Differenzengleichungen - Lösungsmöglichkeiten und Visualisierung an verschiedenen Beispielen |
| + | *Wie beschreibt man kontinuierliche dynamische Vorgänge mit Hilfe von Differentialgleichungen - Visualisierung und Lösungsansätze mit Hilfe verschiedener Technologieunterstützungen an verschiedenen Beispiele |
| | | |
− | Diese Problem lässt sich mittel Differenzengleichung <math>N_{t+1}=N_{t}\cdot e^{b\cdot \tau}</math> modellieren, wobei <math>\tau</math> der Zeitschritt ist. Dies ist in der Tabellekalkulationsmappe [http://wikis.zum.de/medienvielfalt/images/e/e5/Lebensmittel.xls Lebensmittel.xls] realisiert. In der Arbeitsmappe befindet sich ein Arbeitsblatt, das zur Rückrechnung einer Keimanzahl verwendet werden kann. So kann überprüft werden, ob eine Lebensmittelprobe zum Zeitpunkt des Verkaufs noch genießbar war.
| + | '''Du stärkst diese Kompetenzen''': |
− | Es lassen sich die Anfangsanzahl der Keime sowie die Vermehrungskonstante variieren. Die Ergebnisse sing graphisch und in einer Tabelle dargestellt.
| + | |
| | | |
− | {{Merksatz|MERK= '''Antibakterienvermehrungstheorem''':<br />
| + | * Darstellen, Modellieren (Heronverfahren, Radioaktiver Zerfall, Räuber-Beute-Modell, Rekursionsmodelle und Differenzengleichungen Differentialgleichung) |
− | Um Keime nicht zum Leben zu erwecken,<br />
| + | * Rechnen, Operieren (Radioaktiver Zerfall - analytische Herleitung sowie weiterführende Aufgaben, Herleitung der logistischen Gleichung, Lösen von Differentialgleichungen) |
− | ist das gute Lebensmittel im Kühlschrank zu verstecken.
| + | * Interpretieren (exponentielles Wachstum - Lebensmittelkontrolle, exponentielle Abnahme - radioaktiver Zerfall) |
− | }}
| + | * Argumentieren, Begründen (Unterschied zwischen Differenzen- und Differentialgleichung)n |
| + | * Problemlösen (Erkennen der Einsatzgebiete von Differenzen- und Differentialgleichung) |
| | | |
− | === Radioaktiver Zerfall - analytische Herleitung ===
| |
| | | |
− | Die Gleichung <math>N(t)=N_{0} \cdot e^{-\lambda \cdot x}</math> ist eine der bekanntesten der Mathematik und wird in der zehnten Schulstufe eingeführt. In der zwölften ist es nun mit Hilfe der Integralrechung möglich, ausgehen vom Ansatz <math>N(t)'=-N(t) \cdot \lambda</math> obige Relationen per Differentiagleichung analytisch herzuleiten.
| |
− | Unter [http://wikis.zum.de/medienvielfalt/images/6/68/Rad_zerfall_analytisch.pdf Rad_zerfall_analytisch.pdf] ist diese Schritt für Schritt nachvollziehbar. Zuerst wird der allgemeine Fall besprochen und sich dann auf die Anwendung beim radioaktiven Zerfall bezogen.
| |
| | | |
− | Zusätzlich sind drei Standardaufgaben angegeben, um die Verwendung der Gleichung zu wiederholen.
| + | |
− | | + | |
− | === Beispiele zum radioaktiven Zerfall ===
| + | |
− | | + | |
− | {{Merksatz|MERK= '''Halbwertszeit''':
| + | |
− | Der Zeitraum, in dem eine (meist exponentiell) abfallende Größe auf die Hälfte ihres Anfangswertes abgesunken ist. Die physikalische Halbwertszeit ist die für jedes Isotop eines radioaktiven Elementes charakteristische Zeitdauer, in der von einer ursprünglichen vorhandenen Anzahl radioaktiver Kerne bzw. instabilen Elementarteilchen die Hälfte zerfallen ist (entnommen aus Brockhaus in 5 Bänden, zweiter Band).
| + | |
| }} | | }} |
| | | |
− | {{Arbeiten|NUMMER=1|
| |
− | ARBEIT=
| |
− | Jod-131 hat eine Halbwertszeit von 8 Tagen. Berechne den Parameter λ (Basiszeiteinheit 1 Tag und 1 Jahr) in der Zerfallsgleichung auf 6 gültige Nachkommastellen!
| |
− | }}
| |
− |
| |
− | {{Arbeiten|NUMMER=2|
| |
− | ARBEIT=
| |
− | Von Kobalt-60 ist nach 3,88 Jahren 40% des Ausgangsmaterials zerfallen. Wie groß ist die Halbwertszeit dieses Isotops?
| |
− | }}
| |
− |
| |
− | {{Arbeiten|NUMMER=3|
| |
− | ARBEIT=
| |
− | Von 24000 Cäsium-137-Kernen sind nach einer bestimmten Zeit <math>\,t</math> 21771 Kerne zerfallen. Die Halbwertszeit des Isotops beträgt 2,1 Jahre. Berechne <math>\,t</math>!
| |
− | }}
| |
− |
| |
− | '''Aufgaben im pdf-Format'''
| |
− | ----
| |
− |
| |
− | Die Angaben zu den Aufgaben findet man unter [http://wikis.zum.de/medienvielfalt/images/4/4c/Bsp_rad_zerfall.pdf Bsp_rad_zerfall.pdf] (43 kb).
| |
− |
| |
− | ----
| |
− |
| |
− | '''Lösungen im pdf-Format'''
| |
− | ----
| |
− |
| |
− | Die Lösungen zu diesen Aufgaben findet man unter [http://wikis.zum.de/medienvielfalt/images/5/5f/Bsp_rad_zerfall_loes.pdf Lösungen zu Bsp_rad_zerfall.pdf] (59 kb).
| |
− |
| |
− | === Abbau von Giftstoffen ===
| |
− |
| |
− | [http://wikis.zum.de/medienvielfalt/images/1/11/Bsp_giftstoffe.xls Tabellenkalkulation]
| |
− |
| |
− | [http://wikis.zum.de/medienvielfalt/index.php/Bild:Bsp_giftstoffe_zsfg.pdf Zusammenfassung des Giftstoffproblems]
| |
− |
| |
− | [http://wikis.zum.de/medienvielfalt/index.php/Bild:Bsp_giftstoffe.pdf analytische Lösung der Differenzialgleichungen für den Abbau von Giftstoffen]
| |
− |
| |
− | [http://wikis.zum.de/medienvielfalt/index.php/Bild:Bsp_giftstoffe.dfw Derive-Datei zum Abbau von Giftstoffen]
| |
− |
| |
− | === Logistisches Wachstum - beschränktes Wachstum ===
| |
− |
| |
− | Als logistische Gleichung wird eine Differenzengleichung der Form <math>x_{n+1}=r\cdot x_{n}\cdot(1-x_{n})</math>. Die zugehörige Differenzialgleichung (DGLG) sieht folgendermaßen aus: <math>f'(t)=r\cdot f(t)\cdot(1-f(t))</math>
| |
− | Diese DGLG kann analytisch gelöst werden, zur Vereinfachung wird statt <math>\,f(t) </math> <math>\,f</math>geschrieben:
| |
− | <math>
| |
− | \frac{df}{dt}=r\cdot f(1-f)
| |
− | </math>
| |
− |
| |
− | <math>
| |
− | \frac{df}{f(1-f)}=r dt
| |
− | </math>
| |
− |
| |
− | <math>
| |
− | \int \frac{df}{f(1-f)}=\int r dt
| |
− | </math>
| |
| | | |
− | === Ein-Lebewesen-Modell nach Verhulst ===
| + | Informationen zum Einsatz des Lernpfads im Unterricht: {{pdf|Didaktischer_kommentar_diskret_kontinuierlich.pdf|Didaktischer Kommentar}} |
| | | |
− | Erläuterungen, Informationen und Aufgaben zum Ein-Lebewesen-Modell findet man [[Sek2Uni/Pool_1#Logistische_Abbildung.2FGleichung_-_Ein-Lebewesen-Modell_nach_Verhulst|hier]].
| |
| | | |
− | === Weitere Beispiele ===
| + | Der Lernpfad besteht aus vier Kapiteln, die Du in beliebiger Reihenfolge bearbeiten kannst. |
− | * [http://www.lehrer-online.de/fallschirmsprung.php?show_complete_article=1&sid=42192409855723623321494729472670 Bernd Huhn, Sonja Woltzen, Lehrer-Online, Fall mit Reibung - Ein Sprung aus 40.000m Höhe, 2005]
| + | |
− | * [http://www.acdca.ac.at/material/kl8/ffall.htm Josef Lechner, Freier Fall mit Luftwiderstand, ACDCA 1998]
| + | |
| | | |
− | == Differentialgleichungen ==
| + | <center>[[Bild:Logos_1.jpg]]</center> |
− | === Begriffsbildung ===
| + | |
− | Als (gewöhnliche) Differenzialgleichung (DGLG) wird eine Gleichung bezeichnet, die neben einer Unbekannten <math>\,x</math> auch deren Ableitung(en) <math>\,x'</math> (<math>\,x''</math>, ...) enthält. Gelöst wird eine DGLG mittels Integralrechnung.
| + | |
| | | |
− | Die Lösung einer DGLG ist nicht wie bei einer herkömmlichen Gleichung eine Zahl, sondern eine Funktion, genauer eine Funktionenschar, die aus unendlich vielen Funktionen besteht. Da beim unbestimmten Integrieren immer eine Integrationskonstante auftritt, muss eine Zusatzinformation (Anfangsbedingung) gegeben sein, um die Konstante zu bestimmen.
| |
| | | |
− | Erst durch die Anfangsbedingung, die einem Punkt auf dem Graphen der Lösungsfunktion entspricht, kann die Lösungsfunktion exakt bestimmt werden. Die Lösung ist nun eine spezielle Funktion!
| + | == [[Rekursive Beschreibung von Veränderungen]] == |
| | | |
− | DGLG können in allen Bereichen des Lebens angetroffen werden, besonders in den Naturwissenschaften oder der Wirtschaft und dem Sport. In allen Zusammenhängen, bei denenen es um <b>Veränderungen</b> geht, kommen DGLG zur Anwendung.
| |
| | | |
− | Eine Übersicht über die Klassifikation von DGLG findet man unter [http://www.math.tu-berlin.de/geometrie/Lehre/SS05/GDglmA/skriptKlassif.pdf http://www.math.tu-berlin.de/geometrie/Lehre/SS05/GDglmA/skriptKlassif.pdf]
| + | == [[Von der diskreten zur kontinuierlichen Veränderung]] == |
| | | |
− | Links:
| |
− | * [http://statmath.wu-wien.ac.at/~leydold/MOK/HTML/node175.html http://statmath.wu-wien.ac.at/~leydold/MOK/HTML/node175.html], Josef Leydold, Abt. f. angewandte Statistik und Datenverarbeitung, 1997
| |
| | | |
− | === Lösung einfacher Differentialgleichungen === | + | == [[Differentialgleichungen]] == |
| | | |
− | == Ausblick ==
| |
− | === Visualisierung über Richtungsfelder ===
| |
− | === Näherungsverfahren ===
| |
− | Bisher wurde die Lösung der betrachteten Differentialgleichungen über '''Integration''' vorgestellt. Man versucht dabei, eine mathematisch '''exakte''' (und bis auf die Integrationskonstante eindeutige) '''Lösung''' formal zu bestimmen. Die gefundene Lösungsfunktion liefert eine vollständige Beschreibung des betrachteten Problems über den gesamten definierten Verlauf. In den meisten Fällen sind diese gefundenen Lösungsfunktionen auch stetig und bieten daher eine kontinuierliche Problemlösung.<br />
| |
− | Es gibt aber viele Integrale und damit Differentialgleichungen, die man nur äußerst '''mühselig''' oder in vielen Fällen '''überhaupt nicht''' exakt lösen kann!<br />
| |
− | Man geht daher oft den - nebenbei auch bei der Automatisation der Lösungsalgorithmen mit dem Computer meist schnelleren - Weg, die Probleme '''näherungsweise''' zu lösen. Man setzt also auf Näherungsverfahren, die das vorliegende Problem für eine diskrete (endliche) Zahl von Punkten möglichst genau lösen. Man ersetzt also die vollständige Integration einer Funktion durch die näherungsweise Berechnung (des bestimmten Integrals) in einem bestimmten Bereich, für den man sich interessiert. Für diese Näherung / Diskretisierung gibt es verschiedene, unterschiedlich genaue - unterschiedlich komplexe Verfahren.
| |
| | | |
− | Grundsatz:
| + | == [[Ausblick]] == |
− | Der '''Differentialquotient''' wird näherungsweise durch den dazugehörigen '''Differentenquotienten''' beschrieben.
| + | |
| | | |
− | <math>\frac {dy(x)}{dx}</math> beschrieben durch
| |
− | <math>\frac {\Delta y}{\Delta x}
| |
− | =
| |
− | \frac {y(x_{n+1})-y(x_{n})}{x_{n+1}-x_{n}}</math>
| |
| | | |
− | Die bekanntesten Näherungsverfahren
| |
− | * Euler-Cauchy-Verfahren
| |
− | * Runge-Kutta-Verfahren
| |
| | | |
− | Eine Beschreibung der Verfahren finden Sie bei [http://ifgivor.uni-muenster.de/vorlesungen/Num_Modellierung/Populat_Modelle/RungeKutta.html Ulrich Streit, Skript zur Übung "Werkzeuge zur numerischen Modellierung", 1999]
| |
| | | |
− | Links:<br />
| |
− | * [http://www.acdca.ac.at/material/kl8/numerik.htm Josef Lechner, Von Euler-Cauchy zu Runge-Kutta, ACDCA 1998]
| |
− | * [http://education.ti.com/sites/DEUTSCHLAND/downloads/pdf/TI_Nachrichten_2_04.pdf Urs Oswald, H.R. Schneebeli, Kugelstoßen mit Luftwiderstand, TI-Nachrichten 2/04]
| |
− | * [http://www.kohorst-lemgo.de/modell/modlist.htm H. Kohorst, Ph. Portscheller, P. Goldkuhle, Modellbildung und Simulation - NRW-Bildungsserver learn:line]
| |
| | | |
| ---- | | ---- |
| © 2009, Projekt "Medienvielfalt im Mathematikunterricht" | | © 2009, Projekt "Medienvielfalt im Mathematikunterricht" |