Einfluss der Parameter: Unterschied zwischen den Versionen

Aus Medienvielfalt-Wiki
Wechseln zu: Navigation, Suche
(Einfluss der Parameter: Applet verbessert)
K (Leerzeile eingefügt)
 
(7 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
+
{{Trigonometrische Funktionen}}
[[Trigonometrische_Funktionen|Einführung]] - [[Trigonometrische Funktionen/Einfluss der Parameter|Station 1: Einfluss der Parameter]] - [[Trigonometrische Funktionen/Bestimmung der Funktionsgleichung aus dem Graphen|Station 2: Bestimmung der Funktionsgleichung und mehr]] - [[Trigonometrische Funktionen/Anwendungen in der Physik|Anwendungen in der Physik]]
+
</div>
+
 
+
  
 
===FAQ===  
 
===FAQ===  
Zeile 87: Zeile 84:
 
{{Arbeiten|NUMMER=1|ARBEIT=  
 
{{Arbeiten|NUMMER=1|ARBEIT=  
 
Welcher Zusammenhang besteht zwischen der Sinus- und der Kosinusfunktion? Zeichne dazu die Graphen der Funktionen <math>\,\!x \rightarrow \sin\left(x+\frac{\pi}{2}\right)</math> und <math>\,\!x \rightarrow \cos(x)</math> in dein Heft oder mit Hilfe von diesem [http://www.gymnasium-walldorf.de/mathematik/trigo_otto/trigo.html Applet] und betrachte sie! Was fällt dir auf?
 
Welcher Zusammenhang besteht zwischen der Sinus- und der Kosinusfunktion? Zeichne dazu die Graphen der Funktionen <math>\,\!x \rightarrow \sin\left(x+\frac{\pi}{2}\right)</math> und <math>\,\!x \rightarrow \cos(x)</math> in dein Heft oder mit Hilfe von diesem [http://www.gymnasium-walldorf.de/mathematik/trigo_otto/trigo.html Applet] und betrachte sie! Was fällt dir auf?
:[[Trigonometrische_Funktionen/Einfluss_der_Parameter/Tipp_zum_Zeichnen_ins_Heft|Tipp zum Zeichnen ins Heft]]
+
:<popup name="Tipp zum Zeichnen ins Heft">Überlege dir zunächst die Lage der Nullstellen und die Größe der Amplitude!</popup>
 
}}
 
}}
 
||{{#ev:youtube|SQsZVmre3ZI|150}}
 
||{{#ev:youtube|SQsZVmre3ZI|150}}
Zeile 117: Zeile 114:
 
|}
 
|}
  
<ggb_applet height="490" width="660" filename="ÜbungSmily_11.ggb" /> <br>
+
<center>
 +
<ggb_applet width="690" height="517" version="4.2" ggbBase64="UEsDBBQACAgIADo54kIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADo54kIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vxbc9u2En5OfwVGT+05EY37pWO346ZNmzS3xunl9KVDkZTEWiIVkrJlTx/OPzx/6SwAUpIlWbFSy3Y5mUkMXgAs8O3ut7uw5MOvZ+MROkuKMs2zow4JcAclWZTHaTY46kyrfld3vv7qs8NBkg+SXhGifl6Mw+qowwPaWYyDu4AwOziNjzox6fdFL+x3VSzCLg9Zr9uL+71uQnHMQkaiqBd2EJqV6ZdZ/iocJ+UkjJKTaJiMwxd5FFZuzmFVTb48ODg/Pw8a6UFeDA4Gg14wK+MOgpVn5VGnvvgSprsy6Jy57hRjcvDbyxd++m6alVWYRUkH2V1N068+e3R4nmZxfo7O07gaHnWk0R00TNLBELYppOqgA9tpAnudJFGVniUlDF26dXuuxpOO6xZm9v0jf4VG8+10UJyepXFSHHVwYAjRRAqluWaUC4AyL9Ikq+q+uJZ50Mx2eJYm535ae+Uk8g6q8nzUC+2MSBj011+IYorRY9sQ31BopPSvsH+GmW+ob7hvhO/D/XDuu3Lfh/s+nIHG0zLtjZKjTj8clQBimvULUOD8vqwuRolbUv1gAQB9DNss00voDPI6yKMOa3+MH3Ps/vttL+2RLEmsiulWgf79krxGmiDyZtLo39ofXshTV+XRa+TpvyWPNPKIWEJT4Mfun/u/jqe8c5FsJ1RXlfgxEiXfItELuF2BHBt1xyIVvguBhwcN7xzWVIPKoe1b+2KVjEtLPsw4/kEECSAZqYAuBCIGGkXhMUVEIC7glmgkbasQU/CCI4Y0sv0IQ45lhIYf3L4jEgmYyz5U2N6DGI4EQ8RxE0fASMjxG3AdZdBDCCRgkJVOrFgmEZdwwzTisEDLbIrY5zAO7kE4RYwgZscShahEkiJl2ZFwS5pS27XDpBRJjKQdCvQI1OhpEUZoxOxuwKkmeZnOaWCYjCZzrTgc02wyrWrs6ufROG5wrPKV7nEenX4zB7t+k4RltdwNosMiBvlocSVEPTochb1kBIH8xFoCQmfhCNyx4yT086xCjRVQ/2xQhJNhGpUnSVXBqBL9GZ6FL8IqmT2F3mUj24l2kfMwmUajNE7D7BcwEzuFnRAtAileBFKujZcS5XkRn1yUYDto9ntS5LAATAJKKGNUEaOwATwv/BsqWCDgsZKMG0m4AMuNQmvzlAeMGq2VVAxjBfEUBl3/zolOzuZbC2dJ2cA/KNJ4+fpZ+U0+iudQT/I0q56Ek2pauKQIomBh93ScDUaJg9ZFDkgvotNePjvxmDI/17uLSWJtwsnvDZ7ko7xAhd0YbGVQtz3fuj52YfNe2PXBrgdulJTG8/fEUNfDtT3ful6gdb+0eqOk2SXBjZi0dERio9aSSzuTOerMOmiapdULf/e//4KNptFpvVnih7yajntgcHMjhg7fpj65somkUFgZyahUBnQv5YpcslHuxRW5HyF1CSXIt8rqt41Lca/+U6e79vrdMKlCm5gJyoTRSgn4aU3IW/uKnR+eJkWWjLw1Z2BQ03xaeveau8ijw2mZvAmr4XEWv00GQA1vQsvOFSzed3Ub8O6eROkYBvrntQpDa14/Axj+aZwMiqTuH45cNuwV7N7iZd9ae+ymelrk42fZ2Tuw3ZWlHh40+zksoyKdWA9BPQgXp8nCCwClEIJNvDwONl/CLiJLfKCJyqqpg8JpNczBOE/S0Vkaoud5GA3TMcwATAK7Q8+noxS4GzzEMsgoGUPeiyrnJ9l0nBRpNDeH2KXUsNpps6FGwdYUUN77E9huxYQWsMLrazwJhaPJ0Omb1P4SXiTFFczcbC/zuBZc9ytHNoNH4xSIvgu+hMbhzDkVCntlPppWUMWAmrJFFePXVjMiwXYDCIZw464u4Eq4uqmfzpI5CwF+6SVY1lUzWTh1BTR9CpVB6ZinqjnGXfyQxnGSzRccZmBZTj9AuBO/YwRBIvEuOB86AQQcuy1ZRa2bD2opaq2WmGKt0VJvVUukLVqiQrdGS2FrtUQ4+SdpaTYpQJqdpka5Dxn4zObpn8++QEcoRP+C9Dn7vAft5zP0bxR98QX8jH1qflXJ/WnmYmRnMdd2jS5lETdRKV5TKdmoUrwFVbEN1evt1yXH83Ufr++rOUO48cZcRrxla5utFf9d5dfJU+lMFSyVaaKlUVJyzLFydksDI5TUBjOuCSSHFBZ6ueShDgub/l+ptPzTlZzspoB+0xJAFRRkhClKNeBqjLkvPJ98CM8Pc+kDgFMERHPMBDPSEK4Ib+DUElOtMDUUqmh2K2hG+XgcZjHK3MnSk7SIoOgF4PKiszjYCLH1fRQSa7EopBZoD+K0at7XFFvPt6YnqCXSaBIWC10lH0eSq5X1gijJBm3RnYnyA+EnSQdJduYAKhGa4brIvMDeWtBl82QGYHV9EUDqR5dkaZFgJ0U6Q8dN/+Om1zHAa0hACMFKC8GENBwI6pjVEo65jdQbKOxYwIsNTufX/T7zWy19uZ2OJ6M0Squ5HkfWIJ9ltn5NXDRbr3hPk2RiDzxeZ++KMCvtr4qulrrXG9Yb56ZXLSpZs6Fvt9vQVV//9iO5k1BvQK59GA7v+ZNywgTmXAvZOLzVH9FUUaIoNntw+Jvp5ftd9PL9J73clV6+20Uv331cbHyIahEBBEXNMGcKa0GpU4sKiGAaG4iMUigm955sPG1FsmHBxJIyopS2v7HGHs0uAdOHHISClWvKDeb63sz8h13M/IfWmLkMOKZg0YoqxgnYemPmRmsNusEECy7p3u38WSvsXAYUyIEzgzFAp7RuzJwqo6gUkEpJrYRF+Z7M/PkuZv68NWZ+l0F2G6I/tsLMCQbghFAcCkUhOVW+eHQncnsqF4+LaMW2f/S14jNfKz5ds/TBrrXi4FOteG2tqE3AhNaCC8mwBldaqxU3mISrFVkz/50Xh9v88EVr/FBwwzXmEpJUQhdnjIYppoSBiK6hw9557WU78BSBlEJiARFaY/vZynn8ZoZASOeSECrx7ZyKbcPzVZvxVAHWBjIiTA0zmu0lG7ouarzwUeOljxqv1qLGcNeoMfwUNa6PGhqYiDAMKTHhkA2zTVFjlcDmJ4wrFPbwgsjrdjjp5mRuTQN757w3rYBzcwkIBTU1BguqMBVQgNzOOcc2NH9qMZprBTW/nQOKm4WQ1z6EvPEh5Ke1EHK6awg5/RRCrv8lFQxkhitONOOMan7jwmOdwB5eBHnbCifVgWCQHWMpiWEcC++kPFBESCIZ4fDK8P0nzSetQFMBbporoSFMEIK5PyoXEECIVlpRKqR23/baE+GtsN1bz3YnazQ3uQHNzZGf3OaHlTbRG/uH0hsPiDZKMmWIMlKZVXrb4FuO3da9ayO72a9ypH1QxA5u9K4VbkRYAFmDYBJzo4WiDScpJqDkxFgYuNz/wcjP7QCTBhysU0CIJRh4SNechAFawygEXQ42SO6Kk955Tvp5jZPe78JJ7z9x0kZOophYUsKaASdpIJe1lGvNtRpKWnGuW6OkX/bvRVuVdWvFjBBESgqlCwbi1k2hDSiDVwlBOcFC7Z+Ufm0FnPZ0URnDORW2GBRU3heev7cGzyuntey+Tr+P/yCtQHT19EKKfSK6+nGA0cUgz1Yi5y8+cv7qzy5+h4Z5uNeyexhOfOcz3/ncd76EBoJA+AfZHmsntfx5BeAmvDby8e2R7xYPR3CgxC451PVGWyYDezdfytkHEorNNrttpTta7cLymi8GmoBTrhSUFlhJA37tLK1LdYClwthgZSDMy+YDvB+jmns+UFlVwvnDUQIPKFGQLwtMGGRLwKze/WFKwhmDWh4ThaGRyn+QsCtlYH8LArkBIcAckrdGLZcPRy2Nb3RNwDSXtogGD8Fa+t9D2o+9S6ohCHLNBCGCq9ZoIdwUWO9LD90t/gEpnVL2iyhUSfttH6cZKgMuBOeMGAHOQZq/B/CPUMzB8hfd3V+/qP8e1Vf/B1BLBwjaLVIxiQsAAD9LAABQSwECFAAUAAgICAA6OeJC1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIADo54kLaLVIxiQsAAD9LAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAIAwAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> <br>
 +
</center>
  
 
{|
 
{|
Zeile 144: Zeile 143:
 
----
 
----
  
{|
+
<popup name="Lösung zu Aufgabe 1">
|
+
[[Trigonometrische_Funktionen/Einfluss_der_Parameter/Lösung_zu_Aufgabe_1|Lösung zu Aufgabe 1]]
+
  
[[Trigonometrische_Funktionen/Einfluss_der_Parameter/Lösung_zu_Aufgabe_3|Lösung zu Aufgabe 3]]
+
Ja genau, die Graphen der beiden angegebenen Funktionen sind identisch. Genauer gesagt:
 +
{{Merksatz|MERK=
 +
<span style="background-color:yellow;"> Man erhält den Graphen der Kosinusfunktion, indem man z.B. den Graphen der Sinusfunktion um <math>\frac{\pi}{2}</math> nach links verschiebt.
 +
Deshalb verhält sich die allgemeine Kosinusfunktion bei Variation ihrer Parameter genauso wie die allgemeine Sinusfunktion.}}
 +
</popup>
  
----
 
  
 +
<popup name="Lösung zu Aufgabe 3">
 +
 +
Die gesuchten Parameter sind in dieser Reihenfolge <math>\ a, c, d, b</math>.
 +
</popup>
 +
 +
----
 +
{|
 
<span style="background-color:yellow;">Hefteintrag:</span> Lies dir bitte deinen Hefteintrag durch und überprüfe kurz, ob du wirklich alle gelb hinterlegten Texte übernommen hast! Beachte, dass in der Lösung zur Aufgabe 1 auch ein Hefteintrag "versteckt" ist!
 
<span style="background-color:yellow;">Hefteintrag:</span> Lies dir bitte deinen Hefteintrag durch und überprüfe kurz, ob du wirklich alle gelb hinterlegten Texte übernommen hast! Beachte, dass in der Lösung zur Aufgabe 1 auch ein Hefteintrag "versteckt" ist!
 
||{{#ev:youtube|vZY8m7O8y1w|150}}
 
||{{#ev:youtube|vZY8m7O8y1w|150}}

Aktuelle Version vom 3. Juli 2016, 12:36 Uhr

Einführung - Einfluss der Parameter - Bestimmung der Funktionsgleichung und mehr - Anwendungen in der Physik

FAQ

Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.

Einfluss der Parameter

Hefteintrag: Am besten verwendest du hierfür dein Heft im Querformat, damit du eine Tabelle mit vier Spalten für den Einfluss von \ a,b,c und \ d anlegen kannst. Formuliere eine Überschrift und übernimm alle mit gelb gekennzeichneten Texte. Natürlich darfst du dir aber auch noch zusätzlich Notizen machen.


Einteilung in ABC-Expertenteams

Einfluss von  \ a Einfluss von  \ b Einfluss von  \ c Einfluss von  \ d

Untersuche hier den Einfluss von

 \ a

auf die Graphen der Funktionen

 x \rightarrow a\cdot \sin x

und

 x \rightarrow a\cdot \cos x  .

Untersuche hier den Einfluss von

 \ b

auf die Graphen der Funktionen

 x \rightarrow \sin ( b\cdot x )

und

 x \rightarrow \cos ( b\cdot x ) .

Untersuche hier den Einfluss von

 \ c

auf die Graphen der Funktionen

 x \rightarrow \sin ( x + c )

und

 x \rightarrow \cos ( x + c ) .

Untersuche hier den Einfluss von

 \ d

auf die Graphen der Funktionen

 x \rightarrow \sin x + d

und

 x \rightarrow \cos x + d .

Einteilung in 123-Expertenteams


Jetzt noch was zum Knobeln!!!

  Aufgabe 1  Stift.gif

Welcher Zusammenhang besteht zwischen der Sinus- und der Kosinusfunktion? Zeichne dazu die Graphen der Funktionen \,\!x \rightarrow \sin\left(x+\frac{\pi}{2}\right) und \,\!x \rightarrow \cos(x) in dein Heft oder mit Hilfe von diesem Applet und betrachte sie! Was fällt dir auf?

Du hast eine Menge über den Einfluss der einzelnen Parameter auf das Aussehen der Graphen herausgefunden. Natürlich können aber die Parameter nicht nur einzeln variiert werden, sondern auch mehrere oder alle gleichzeitig.

Maehnrot.jpg
Merke:

Die allgemeine Sinusfunktion lautet

  x\rightarrow a\cdot\sin\Big(b\cdot (x+c)\Big)+d  .

Entsprechend lautet die allgemeine Kosinusfunktion

  x \rightarrow a\cdot \cos \Big( b\cdot (x + c) \Big) + d  .

Dabei sind \ a,b,c,d Parameter, die auf das Aussehen des Funktionsgraphen Einfluss nehmen. Es gilt  \ a,b,c,d \in \R   und  a,b\neq 0 .

  Aufgabe 2  Stift.gif

Bringe den Smily zum Lachen! Variiere dazu die verschiedenen Parameter der allgemeinen Sinusfunktion und beobachte die Auswirkungen auf den Graphen.


  Aufgabe 3  Stift.gif
Pluspunkt für eine richtige Antwort:  
Minuspunkte für eine falsche Antwort:
Ignoriere den Fragen-Koeffizienten:

1. Parameter gesucht! Je einer der Parameter  \ a,  b, c und \ d wird variiert, die anderen bleiben unverändert. Ergänze jeweils den Parameter, der variiert wird!

Die Nullstellen, Extrema und die Periode verändern sich nicht, falls varriert wird, die Wertemenge jedoch schon.
Variiert man , so verändern sich die Nullstellen und Extrema, aber nicht die Periode und die Wertemenge.
Ändern sich die Nullstellen und die Wertemenge, wobei die Extrema und die Periode bleiben, dann wird variiert.
Nullstellen, Extrema und Periode ändern sich, die Wertemenge bleibt aber gleich, falls variiert wird.

Punkte: 0 / 0
  Aufgabe 4  Stift.gif
  • In diesem Applet (Klicke dann dort auf Funktionen erkennen 3!) kannst du zeigen, ob du zu gegebenen Funktionstermen die zugehörigen Graphen findest.
  • Memory



Hefteintrag: Lies dir bitte deinen Hefteintrag durch und überprüfe kurz, ob du wirklich alle gelb hinterlegten Texte übernommen hast! Beachte, dass in der Lösung zur Aufgabe 1 auch ein Hefteintrag "versteckt" ist!

Weiter geht es mit

Station 2: Bestimmung der Funktionsgleichung und mehr