Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
(Navigation) |
K (Leerzeile) |
||
Zeile 1: | Zeile 1: | ||
{{Potenzfunktionen}} | {{Potenzfunktionen}} | ||
+ | |||
== Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN == | == Die Graphen der Funktionen mit f(x) = x<sup>-1/n</sup>, n <small>∈</small> IN == |
Version vom 4. Januar 2011, 12:59 Uhr
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN
Vergleich mit Funktionen aus Stufe 3
Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot gestrichelt); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
|
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl
und eine natürliche Zahl
wird definiert:
für
Auf unsere Situation angewandt ergibt sich:
|
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I:
Es sei
Vertauschen von |
|
Beispiel II:
Es sei Auflösen nach |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von und
!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit
.
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
Potenzfunktionen mit
![]() ![]() ![]() ![]() Hat man aber eine Potenzfunktion ![]() ![]() ![]() ![]() ![]() ![]() |
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)
Schau Dir dieses Video (Link hier) auf www.oberprima.com an. Dort lernst Du die Merkregel des "5 S"-Prinzips kennen; die "5 S" lauten:
Beantworte nun die folgenden Fragen:
|
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit
|
|
![]() |
Und nun gehts zum Abschlusstest |