Einführung
Die Graphen der Funktionen x, x² und x³
Die Graphen und ein Wanderer
Aufgabe 2
- Ein Wanderer legt bei seinem Weg von A nach B einen Höhenunterschied von 10 m zurück. Wir betrachten nun drei verschiedene Formen des Verbindungsweges. Diese drei Wege haben im Seitenprofil in etwa die eingezeichneten Formen W1, W2, W3. Beschreibe den Wanderweg jeweils entlang dieser drei Wege, den der Wanderer zurücklegt, wenn er von A nach B geht.
|
|
|
Wir betrachten jetzt die drei Funktionen mit ihren Graphen im Bereich von x = 0 bis x = 2
|
|
g(x) = x (Graph A)
f(x) = x2 (Graph B)
h(x) = x3 (Graph C)
|
Aufgabe 3
- Begründe mit Hilfe der Tabelle, warum die Graphen A und B in der Umgebung des Nullpunktes stärker steigen als der Graph C.
- Ab welchem Punkt steigt der Graph C stärker als der Graph A?
- Ab welchem Punkt steigt der Graph C stärker als der Graph B?
|
|
x |
Graph A |
Graph B |
Graph C
|
0 |
|
|
|
0,2 |
|
|
|
0,4 |
|
|
|
... |
|
|
|
... |
|
|
|
2 |
|
|
|
|
Verändern von Variablen
Der Graph der Funktion ha(x)
|
Aufgabe 5
Betätige den Schieberegler um die Variable a zu verändern. Beschreibe die Veränderung der Graphen der Funktion mit in Abhängigkeit von a!
|
|
Der Graph der Funktion ha,c(x)
|
Aufgabe 6
Verändere - mit dem Schieberegler - den Wert der Variablen c. Beschreibe!
|
|
Teste Dein Wissen
Ordne die Funktionsterme den Funktionsgraphen zu! (auf www.mathe-online.at)
Wähle den zum Graphen passenden Funktionsterm aus!