Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen
Zeile 52: | Zeile 52: | ||
Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}.</math> | Wir betrachten hier Potenzfunktionen mit <math>f(x)=x^{\frac 1 n}</math> , <math>n \in \mathbb{N}.</math> | ||
− | {{Merksatz|MERK= Wegen <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> nennt man diese Funktionen auch ''Wurzelfunktionen''. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) < | + | {{Merksatz|MERK= Wegen <math>x^{\frac{1}{n}}:=\sqrt[n]{x}</math> nennt man diese Funktionen auch ''Wurzelfunktionen''. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR<sup>+</sup><sub>0</sub>. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit <math>f(x)=x^{\frac 1 n}</math> die Umkehrfunktion zur Potenzfunktion g der Bauart g(x)<math>=</math> x<sup>n</sup> und g die Umkehrfunktion zu f (Näheres zur ''Umkehrfunktion'' siehe [[Potenzfunktionen_4._Stufe#Potenzfunktionen_und_ihre_Umkehrfunktionen | nächstes Kapitel]]). |
− | Im Falle <math> | + | Im Falle n<math>=</math>2 nennt man die Wurzel "''Quadratwurzel''" und man schreibt: |
:<math>x^{\frac{1}{2}} = \sqrt[2]{x} =: \sqrt{x}</math> | :<math>x^{\frac{1}{2}} = \sqrt[2]{x} =: \sqrt{x}</math> | ||
− | Im Falle <math> | + | Im Falle n<math>=</math>3 nennt man die Wurzel "''Kubikwurzel''", i. Z.: <font style="vertical-align:27%;"><math>x^{\frac{1}{3}}</math></font> bzw. <math>\sqrt[3]{x}</math>. |
}} | }} | ||
Zeile 70: | Zeile 70: | ||
|- valign="top" | |- valign="top" | ||
| | | | ||
− | Beispielsweise ergibt sich die Länge der '''Diagonale | + | Beispielsweise ergibt sich die Länge der '''Diagonale B in einem Quadrat''' der Seitenlänge a<math>=</math>1 über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu: |
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math> | :<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow</math> <math>\quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math> | ||
Die Lösung ist <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten. | Die Lösung ist <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten. | ||
! width="300" | [[Bild:diagonale.png|right|165px]] | ! width="300" | [[Bild:diagonale.png|right|165px]] | ||
|- valign="top" | |- valign="top" | ||
− | | Auch die Länge der '''Raumdiagonale | + | | Auch die Länge der '''Raumdiagonale C im Einheitswürfel''' (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = D^2</math>) zu: |
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math> | :<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow</math> <math> \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math> | ||
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben. | Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben. | ||
Zeile 82: | Zeile 82: | ||
=== Beispiel: Kubikwurzel === | === Beispiel: Kubikwurzel === | ||
− | Das Volumen | + | Das Volumen V eines Würfels (lat.: "''cubus''") der Kantenlänge s<math>=</math>5 ergibt sich über:<br /> |
:<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math> | :<math>V = s^3 = 5 \cdot 5 \cdot 5 = 5^3.</math> | ||
− | Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen <math> | + | Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V<math>=</math>27 durch ziehen der 3.-Wurzel: |
:<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math> | :<math>\sqrt[3]{27}=\sqrt[3]{3\cdot 3 \cdot 3} = \sqrt[3]{3^3} = \sqrt[3]{3}^3 = 3.</math> | ||
Zeile 94: | Zeile 94: | ||
{{Arbeiten|NUMMER=3|ARBEIT= | {{Arbeiten|NUMMER=3|ARBEIT= | ||
− | In nebenstehendem Applet kannst Du die Parameter | + | In nebenstehendem Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.<br /> |
# Wie beeinflusst der Parameter a die Lage des Graphen? | # Wie beeinflusst der Parameter a die Lage des Graphen? | ||
# Wie beeinflusst der Parameter c die Lage des Graphen? | # Wie beeinflusst der Parameter c die Lage des Graphen? | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
− | : zu 1.) Der Parameter | + | : zu 1.) Der Parameter a bewirkt für a>1 eine Streckung des Graphen in y-Richtung, für 0<a<1 eine Stauchung in y-Richtung; für a<math>=</math>0 erhält man eine konstante Funktion mit f(x)<math>=</math>c. Wird a negativ, so wird f zu einer monoton fallenden Funktion.<br />zu 2.) Der Parameter c bewirkt eine Verschiebung des kompletten Graphen in y-Richung, da zu jedem Funktionswert y der Wert c addiert wird. |
}}<br> | }}<br> | ||
}} | }} | ||
Zeile 111: | Zeile 111: | ||
Wegen | Wegen | ||
− | : | + | :(-2)<sup>3</sup> <math>=</math>-8 |
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt: | erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt: |
Version vom 17. Januar 2011, 13:02 Uhr
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.
Inhaltsverzeichnis |
Die Graphen der Funktionen f(x) = x1/n, n ∈ IN
Funktionsgraph kennenlernen
|
Vergleich mit Funktionen aus Stufe 2
|
Bezeichungen: Potenzen und Wurzeln
Wir betrachten hier Potenzfunktionen mit ,
Merke:
Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) IR+0. Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion f mit die Umkehrfunktion zur Potenzfunktion g der Bauart g(x) xn und g die Umkehrfunktion zu f (Näheres zur Umkehrfunktion siehe nächstes Kapitel). Im Falle n2 nennt man die Wurzel "Quadratwurzel" und man schreibt: Im Falle n3 nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. . |
Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:
Beispiel: Quadratwurzeln
Beispielsweise ergibt sich die Länge der Diagonale B in einem Quadrat der Seitenlänge a1 über den Satz des Pythagoras zu: Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten. |
|
Auch die Länge der Raumdiagonale C im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:
Die Lösung ist also angeben. |
Beispiel: Kubikwurzel
Das Volumen V eines Würfels (lat.: "cubus") der Kantenlänge s5 ergibt sich über:
Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen V27 durch ziehen der 3.-Wurzel:
Einfluss von Parametern
In nebenstehendem Applet kannst Du die Parameter a und c mit den Schiebereglern verändern.
|
*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen
(*Zusatzinformation, freilwillige Ergänzung)
Einschränkung auf IR+0
Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:
Wegen
- (-2)3 -8
erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:
Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:
- mit und
Wurzelfunktion auf ganz IR
Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass
- .
Dann gilt: IDg = IR.
Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben. |