Zusatzaufgaben: Unterschied zwischen den Versionen
(→Zusatzaufgaben: Lösung von Z1 in Latex geschrieben) |
K (→Zusatzaufgaben) |
||
Zeile 40: | Zeile 40: | ||
Nullstellen der Sinusfunktion: <math>x = k\cdot \pi </math> mit <math>\ k \in \Z</math> oder <math>x \in \{ ...;0 ;\ \pi;\ 2\pi;\ 3\pi; \ ...\}</math> | Nullstellen der Sinusfunktion: <math>x = k\cdot \pi </math> mit <math>\ k \in \Z</math> oder <math>x \in \{ ...;0 ;\ \pi;\ 2\pi;\ 3\pi; \ ...\}</math> | ||
− | Nullstellen: <math>x_N = | + | Nullstellen: <math>x_N = 1+k\cdot \frac{\pi}{2} </math> mit <math>\ k \in \Z</math> oder <math>x_N \in \{ ...; 1+\frac{1}{2}\pi;\ 1+\pi;\ 1+\frac{3}{2}\pi;\ ...\}</math> |
Tiefpunkte: <math>x_T = \frac{7}{12}\pi + k \cdot \pi</math> mit <math>\ k \in \Z</math> oder <math>x_T \in \{ ...; -\frac{5}{12}\pi;\ \frac{7}{12}\pi;\ \frac{19}{12}\pi;\ ...\}</math> | Tiefpunkte: <math>x_T = \frac{7}{12}\pi + k \cdot \pi</math> mit <math>\ k \in \Z</math> oder <math>x_T \in \{ ...; -\frac{5}{12}\pi;\ \frac{7}{12}\pi;\ \frac{19}{12}\pi;\ ...\}</math> |
Version vom 8. Februar 2009, 14:21 Uhr
Einführung - Station 1: Einfluss der Parameter - Station 2: Bestimmung der Funktionsgleichung und mehr - Station 3: Anwendungen in der Physik - Station 4: Zusatzaufgaben
FAQ
Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.
Experimentier-Ecke
Du hast doch bestimmt einen Zirkel, oder? Genauer gesagt benötigst du nicht den Zirkel, sondern nur die Bleistiftmine für dieses Experiment. Die Mine sollte schräg angefeilt sein. Nimm die Mine aus dem Zirkel und lege sie auf ein Blatt Papier. Wenn du die Mine nun mit einem leichten Druck über das Papier rollst, kannst du den Graphen einer Sinusfunktion erkennen. Diesen kannst du dann gerne noch mit einem Stift nachfahren. |
Zusatzaufgaben
In dem unteren Bild sind die Sinuskurve (rot) und ein Graph einer allgemeinen Sinusfunktion (schwarz) zu sehen.
|
|
Lösung zu Aufgabe Z1:
Nullstellen der Sinusfunktion: mit oder
Nullstellen: mit oder
Tiefpunkte: mit oder
Hochpunkte: mit oder
streng monoton fallend:
streng monoton steigend:
a) Die Nullstellen der Sinusfunktion sind bei allen Vielfachen von PI, also x = k*PI.
b) Die Nullstellen der "schwarzen" Funktion sind bei x = 1, 1+PI/2, 1+PI, ...
c) Hochpunkte sind bei x = 1 + PI/4, 1 + 5/4*PI, ...
Tiefpunkte sind bei x = 1 - PI/4, 1 + 3/4*PI, ...