Potenzfunktionen - 4. Stufe
Inhaltsverzeichnis |
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN*
Vergleich mit Funktionen aus Stufe 3
Vergleiche den neuen Graphen (blau) mit dem, den Du schon aus Stufe 3 dieses Kurses kennst (rot strichliert); mit dem Schieberegler kannst Du dazu wieder die Exponenten verändern.
|
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
|
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I:
Es sei g eine Potenzfunktion, definiert auf D = IR+0 durch . Gesucht ist die Umkehrfunktion von . ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3. |
|
Beispiel II:
Es sei f eine Potenzfunktion, nun definiert durch mit dem Definitionsbereich D = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1. Auflösen nach x ergibt: |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zu welchen vorgegebenen Potenzfunktionen gibt es eine Umkehrfunktion? Welche Eigenschaften muss die gegebene Potenzfunktion erfüllen, damit es eine Umkehrfunktion gibt?
Potenzfunktionen mit mit sind auf ihrem Definitionsbereich streng monoton steigend. Deswegen gibt es auf diesem Bereich eine Umkehrfunktion und zwar von der Bauart f(x)xn.
Ähnliches gilt für Funktionen der Form mit auf dem Definitionsbereich . Hier lautet die Umkehrfunktion f(x)x-n. Hat man aber eine Potenzfunktion f(x)xn mit (also eine aus der Stufe 1 dieses Lernpfades) vorgegeben, so ist sie - für gerade n - auf ihrem Defintionsbereich nicht überall streng monoton. Die Umkehrbarkeit ist aber nur auf streng monotonen Intervallen möglich. Betrachtet man f auf dem eingeschränkten Definitionsbereich , so ist sie dort streng monoton und damit umkehrbar. Die Umkehrfunktion ist dort . |
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form Sie sind definiert auf dem Definitionsbereich D = IR+0.
Die Umkehrfunktionen von Potenzfunktionen der Form mit n ∈ IN* und sind Potenzfunktionen der Form . Sie sind definiert auf dem Definitionsbereich D = IR+.
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)
Schau Dir dieses Video (Link hier) auf www.oberprima.com an. Dort lernst Du die Merkregel des "5 S"-Prinzips kennen; die "5 S" lauten:
Beantworte nun die folgenden Fragen:
|
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|
Und nun gehts zum Abschlusstest |